
Ling-Qing Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726184/publications.pdf Version: 2024-02-01

LINC-OINC YUAN

#	Article	IF	CITATIONS
1	H19 Promotes Osteoblastic Transition by Acting as ceRNA of miR-140-5p in Vascular Smooth Muscle Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 774363.	1.8	5
2	Editorial: The Role of Exosomes in Metabolic and Endocrine Disease. Frontiers in Endocrinology, 2022, 13, 859650.	1.5	1
3	Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nature Communications, 2022, 13, 1453.	5.8	44
4	Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	5
5	Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. Journal of Nanobiotechnology, 2022, 20, .	4.2	10
6	Exosomes and Obesity-Related Insulin Resistance. Frontiers in Cell and Developmental Biology, 2021, 9, 651996.	1.8	16
7	The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy. Frontiers in Endocrinology, 2021, 12, 671566.	1.5	18
8	Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization?. Frontiers in Cell and Developmental Biology, 2021, 9, 701788.	1.8	37
9	The Controversial Role of Irisin in Clinical Management of Coronary Heart Disease. Frontiers in Endocrinology, 2021, 12, 678309.	1.5	8
10	Relationship between bone mineral density and fragility fracture risk: a case-control study in Changsha, China. BMC Musculoskeletal Disorders, 2021, 22, 728.	0.8	10
11	Cerebro-Cardiovascular Risk, Target Organ Damage, and Treatment Outcomes in Primary Aldosteronism. Frontiers in Cardiovascular Medicine, 2021, 8, 798364.	1.1	11
12	The Role of Mesenchymal Stromal Cells-Derived Small Extracellular Vesicles in Diabetes and Its Chronic Complications. Frontiers in Endocrinology, 2021, 12, 780974.	1.5	12
13	The Interplay Between the Renin-Angiotensin-Aldosterone System and Parathyroid Hormone. Frontiers in Endocrinology, 2020, 11, 539.	1.5	26
14	New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Frontiers in Physiology, 2020, 11, 570270.	1.3	16
15	Exosomes as Mediators of Cell-to-Cell Communication in Thyroid Disease. International Journal of Endocrinology, 2020, 2020, 1-10.	0.6	17
16	The Role of Substance P in the Regulation of Bone and Cartilage Metabolic Activity. Frontiers in Endocrinology, 2020, 11, 77.	1.5	33
17	Novel Strategies for Gene Therapy-Recent Advances in the Use of Exosomes for Disease Treatment. Current Pharmaceutical Design, 2020, 25, 4463-4463.	0.9	3
18	Melatonin alleviates vascular calcification and ageing through exosomal miRâ€204/miRâ€211 cluster in a paracrine manner. Journal of Pineal Research, 2020, 68, e12631.	3.4	98

Ling-Qing Yuan

#	Article	IF	CITATIONS
19	Plasma Exosomes Derived From Patients With End-Stage Renal Disease and Renal Transplant Recipients Have Different Effects on Vascular Calcification. Frontiers in Cell and Developmental Biology, 2020, 8, 618228.	1.8	16
20	Exosomes and Bone Disease. Current Pharmaceutical Design, 2020, 25, 4536-4549.	0.9	35
21	The Suppression of miR-199a-3p by Promoter Methylation Contributes to Papillary Thyroid Carcinoma Aggressiveness by Targeting RAP2a and DNMT3a. Frontiers in Cell and Developmental Biology, 2020, 8, 594528.	1.8	16
22	Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocrine-Related Cancer, 2020, 27, X5.	1.6	1
23	Silver Ã…ngstromâ€Particles: Ã…ngstromâ€Scale Silver Particles as a Promising Agent for Lowâ€Toxicity Broadâ€Spectrum Potent Anticancer Therapy (Adv. Funct. Mater. 23/2019). Advanced Functional Materials, 2019, 29, 1970154.	7.8	1
24	Ãngstrom‣cale Silver Particles as a Promising Agent for Lowâ€Toxicity Broadâ€&pectrum Potent Anticancer Therapy. Advanced Functional Materials, 2019, 29, 1808556.	7.8	29
25	Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale, 2019, 11, 20884-20892.	2.8	164
26	Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocrine-Related Cancer, 2019, 26, 525-538.	1.6	93
27	Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1. Aging, 2019, 11, 3182-3197.	1.4	33
28	Aberrant DNA methylation of synaptophysin is involved in adrenal cortisol-producing adenoma. Aging, 2019, 11, 5232-5245.	1.4	7
29	Adipose tissue-derived omentin-1 attenuates arterial calcification via AMPK/Akt signaling pathway. Aging, 2019, 11, 8760-8776.	1.4	17
30	miR‑124 regulates the osteogenic differentiation of bone marrow‑derived mesenchymal stem cells by targeting Sp7. Molecular Medicine Reports, 2019, 19, 3807-3814.	1.1	14
31	Role of tumor‑derived exosomes in bone metastasis (Review). Oncology Letters, 2019, 18, 3935-3945.	0.8	38
32	Omentin-1 prevents inflammation-induced osteoporosis by downregulating the pro-inflammatory cytokines. Bone Research, 2018, 6, 9.	5.4	108
33	Could Breast Arterial Calcification Predict the Risk of Coronary Artery Disease?. JACC: Cardiovascular Imaging, 2018, 11, 1932.	2.3	2
34	Vitamin D ₃ Supplementation and Bone Health. JAMA Pediatrics, 2018, 172, 1202.	3.3	1
35	Frequent functional activation of RAS signalling not explained by RAS/RAF mutations in relapsed/refractory multiple myeloma. Scientific Reports, 2018, 8, 13522.	1.6	11
36	Arterial Calcification Is Regulated Via an miR-204/DNMT3a Regulatory Circuit Both In Vitro and in Female Mice. Endocrinology, 2018, 159, 2905-2916.	1.4	48

LING-QING YUAN

#	Article	IF	CITATIONS
37	Complex Relationship Between Proton Pump Inhibitor Use and Bone Health. American Journal of Gastroenterology, 2017, 112, 651.	0.2	1
38	Oestrogen Inhibits Arterial Calcification by Promoting Autophagy. Scientific Reports, 2017, 7, 3549.	1.6	62
39	MicroRNA and Cardiovascular Disease 2016. BioMed Research International, 2017, 2017, 1-2.	0.9	2
40	Osteoporosis Overtreatment—A Clinical Problem That Needs to Be Discussed. JAMA Internal Medicine, 2016, 176, 1033.	2.6	1
41	Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop. Scientific Reports, 2016, 6, 25578.	1.6	41
42	Obstructive sleep apnoea and bone health. European Respiratory Journal, 2016, 48, 1248-1249.	3.1	1
43	Gender differences in a reference database of age-related femoral neck geometric parameters for Chinese population and their association with femoral neck fractures. Bone, 2016, 93, 64-70.	1.4	4
44	Epigenetic mechanisms of bone regeneration and homeostasis. Progress in Biophysics and Molecular Biology, 2016, 122, 85-92.	1.4	22
45	Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clinical Interventions in Aging, 2015, 10, 1017.	1.3	151
46	The Role of Epigenetics in Arterial Calcification. BioMed Research International, 2015, 2015, 1-8.	0.9	21
47	Osteoporosis 2014. International Journal of Endocrinology, 2015, 2015, 1-2.	0.6	Ο
48	MicroRNA and Cardiovascular Disease. BioMed Research International, 2015, 2015, 1-2.	0.9	6
49	Puerarin Attenuates Calcification of Vascular Smooth Muscle Cells. The American Journal of Chinese Medicine, 2014, 42, 337-347.	1.5	16
50	Leptin Promotes the Osteoblastic Differentiation of Vascular Smooth Muscle Cells From Female Mice by Increasing RANKL Expression. Endocrinology, 2014, 155, 558-567.	1.4	33
51	Age-related bone turnover markers and osteoporotic risk in native Chinese women. BMC Endocrine Disorders, 2014, 14, 8.	0.9	10
52	MiR-133a Modulates Osteogenic Differentiation of Vascular Smooth Muscle Cells. Endocrinology, 2013, 154, 3344-3352.	1.4	119
53	Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids, 2013, 44, 961-968.	1.2	50
54	Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicology and Applied Pharmacology, 2013, 272, 591-597.	1.3	33

LING-QING YUAN

#	Article	IF	CITATIONS
55	Early bone mineral density decrease is associated with FSH and LH, not estrogen. Clinica Chimica Acta, 2013, 415, 69-73.	0.5	7
56	Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway. International Journal of Endocrinology, 2013, 2013, 1-6.	0.6	53
57	Novel Adipokines and Bone Metabolism. International Journal of Endocrinology, 2013, 2013, 1-9.	0.6	42
58	Osteoporosis. International Journal of Endocrinology, 2013, 2013, 1-2.	0.6	2
59	MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovascular Research, 2012, 96, 320-329.	1.8	152
60	Effects of down-regulation of microRNA-23a on TNF-α-induced endothelial cell apoptosis through caspase-dependent pathways. Cardiovascular Research, 2012, 93, 623-632.	1.8	60
61	Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway. Amino Acids, 2012, 43, 1697-1704.	1.2	10
62	Apelin–APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids, 2012, 43, 2125-2136.	1.2	68
63	Ghrelin Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells through the ERK Pathway. PLoS ONE, 2012, 7, e33126.	1.1	47
64	Apelin Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells. PLoS ONE, 2011, 6, e17938.	1.1	56
65	RANKL Is a Downstream Mediator for Insulin-Induced Osteoblastic Differentiation of Vascular Smooth Muscle Cells. PLoS ONE, 2011, 6, e29037.	1.1	32
66	Estrogen receptor α36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women. Journal of Bone and Mineral Research, 2011, 26, 156-168.	3.1	49
67	Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovascular Research, 2011, 92, 296-306.	1.8	76
68	Connective tissue growth factor is a downstream mediator for preptin-induced proliferation and differentiation in human osteoblasts. Amino Acids, 2010, 38, 763-769.	1.2	25
69	Suppressive effect of dexamethasone on TIMP-1 production involves murine osteoblastic MC3T3-E1 cell apoptosis. Amino Acids, 2010, 38, 1145-1153.	1.2	19
70	Taurine inhibits osteoclastogenesis through the taurine transporter. Amino Acids, 2010, 39, 89-99.	1.2	28
71	Taurine restores Axl/Gas6 expression in vascular smooth muscle cell calcification model. Amino Acids, 2010, 39, 375-383.	1.2	14
72	Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids, 2010, 39, 1193-1200.	1.2	72

Ling-Qing Yuan

#	Article	IF	CITATIONS
73	L-carnitine and taurine synergistically inhibit the proliferation and osteoblastic differentiation of vascular smooth muscle cells. Acta Pharmacologica Sinica, 2010, 31, 289-296.	2.8	13
74	The relationship between the levels of gonadotropic hormones and OPG, leptin, TGF-β1 and TGF-β2 in Chinese adult women. Clinica Chimica Acta, 2010, 411, 1296-1305.	0.5	11
75	Effect of progesterone on apoptosis of murine MC3T3-E1 osteoblastic cells. Amino Acids, 2009, 36, 57-63.	1.2	17
76	Development of Arterial Calcification in Adiponectin-Deficient Mice: Adiponectin Regulates Arterial Calcification. Journal of Bone and Mineral Research, 2009, 24, 1461-1468.	3.1	76
77	Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway. Amino Acids, 2008, 34, 525-530.	1.2	31
78	Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides, 2007, 28, 708-718.	1.2	110
79	WISP3 suppresses insulin-like growth factor signaling in human chondrocytes. Molecular and Cellular Endocrinology, 2007, 279, 1-8.	1.6	12
80	Apelin suppresses apoptosis of human osteoblasts. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 247-254.	2.2	78
81	Apelin and its receptor are expressed in human osteoblasts. Regulatory Peptides, 2006, 134, 118-125.	1.9	65
82	Adiponectin Stimulates RANKL and Inhibits OPG Expression in Human Osteoblasts Through the MAPK Signaling Pathway. Journal of Bone and Mineral Research, 2006, 21, 1648-1656.	3.1	310
83	Establishment of BMD reference curves at different skeletal sites in women, using a Cartesian coordinate numeration system. Osteoporosis International, 2005, 16, 1655-1662.	1.3	5
84	Gender differences in bone density at different skeletal sites of acquisition with age in Chinese children and adolescents. Journal of Bone and Mineral Metabolism, 2005, 23, 253-260.	1.3	29
85	Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Experimental Cell Research, 2005, 309, 99-109.	1.2	318
86	Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Frontiers in Endocrinology, 0, 13, .	1.5	10