Nicolas L'Heureux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726032/publications.pdf

Version: 2024-02-01

39 papers 6,554 citations

304368

22

h-index

301761 39 g-index

42 all docs 42 docs citations

times ranked

42

4645 citing authors

#	Article	IF	CITATIONS
1	A completely biological tissue-engineered human blood vessel. FASEB Journal, 1998, 12, 47-56.	0.2	1,124
2	Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 2006, 12, 361-365.	15.2	858
3	A completely biological tissueâ€engineered human blood vessel. FASEB Journal, 1998, 12, 47-56.	0.2	845
4	Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 2009, 30, 1542-1550.	5.7	475
5	Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet, The, 2009, 373, 1440-1446.	6.3	466
6	<i>In vitro</i> reconstruction of a human capillaryâ€like network in a tissueâ€engineered skin equivalent. FASEB Journal, 1998, 12, 1331-1340.	0.2	412
7	Tissue-Engineered Blood Vessel for Adult Arterial Revascularization. New England Journal of Medicine, 2007, 357, 1451-1453.	13.9	340
8	In vitro construction of a human blood vessel from cultured vascular cells: A morphologic study. Journal of Vascular Surgery, 1993, 17, 499-509.	0.6	250
9	Technology Insight: the evolution of tissue-engineered vascular graftsâ€"from research to clinical practice. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 389-395.	3.3	246
10	Characterization of printed PLA scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 887-894.	2.1	227
11	Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1401-H1406.	1.5	186
12	First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. Journal of Vascular Surgery, 2014, 60, 1353-1357.	0.6	161
13	A human tissueâ€engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB Journal, 2001, 15, 515-524.	0.2	155
14	The Evolution of Vascular Tissue Engineering and Current State of the Art. Cells Tissues Organs, 2012, 195, 144-158.	1.3	152
15	PECAM-1 Interacts With Nitric Oxide Synthase in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1796-1802.	1.1	84
16	Case Study: First Implantation of a Frozen, Devitalized Tissue-engineered Vascular Graft for Urgent Hemodialysis Access. Journal of Vascular Access, 2011, 12, 67-70.	0.5	76
17	Tissue engineering by self-assembly. Materials Today, 2011, 14, 218-224.	8.3	75
18	Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole?. Regenerative Medicine, 2008, 3, 925-937.	0.8	52

#	Article	IF	Citations
19	From newborn to adult: Phenotypic and functional properties of skin equivalent and human skin as a function of donor age., 1997, 171, 179-189.		46
20	Human textiles: A cell-synthesized yarn as a truly "bio―material for tissue engineering applications. Acta Biomaterialia, 2020, 105, 111-120.	4.1	36
21	Comparison of the impact of preservation methods on amniotic membrane properties for tissue engineering applications. Materials Science and Engineering C, 2019, 104, 109903.	3.8	33
22	Expression of Versican Isoform V3 in the Absence of Ascorbate Improves Elastogenesis in Engineered Vascular Constructs. Tissue Engineering - Part A, 2010, 16, 501-512.	1.6	28
23	Assessment of fresh and preserved amniotic membrane for guided bone regeneration in mice. Journal of Biomedical Materials Research - Part A, 2020, 108, 2044-2056.	2.1	26
24	New Biological Solutions for Hemodialysis Access. Journal of Vascular Access, 2011, 12, 185-192.	0.5	25
25	Autologous cell therapies: challenges in US FDA regulation. Regenerative Medicine, 2012, 7, 94-97.	0.8	21
26	Characterization of a Cell-Assembled extracellular Matrix and the effect of the devitalization process. Acta Biomaterialia, 2018, 82, 56-67.	4.1	21
27	Cartography of the mechanical properties of the human amniotic membrane. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 18-26.	1.5	20
28	Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2. Materials Science and Engineering C, 2021, 124, 112032.	3.8	20
29	Development of a selective peptide antagonist for the human natriuretic peptide receptor-B. Peptides, 2005, 26, 517-524.	1.2	19
30	Use of human vessels and human vascular smooth muscle cells in pharmacology. Cell Biology and Toxicology, 1996, 12, 223-225.	2.4	10
31	Cell-assembled extracellular matrix (CAM) sheet production: Translation from using human to large animal cells. Journal of Tissue Engineering, 2021, 12, 204173142097832.	2.3	9
32	Optical Transillumination Tomography for Imaging of Tissue-Engineered Blood Vessels. Annals of Biomedical Engineering, 2005, 33, 323-327.	1.3	8
33	In vivo remodeling of human cell-assembled extracellular matrix yarns. Biomaterials, 2021, 273, 120815.	5.7	8
34	Haemodialysis access via tissue-engineered vascular graft – Authors' reply. Lancet, The, 2009, 374, 201.	6.3	6
35	Inter-donor variability of extracellular matrix production in long-term cultures of human fibroblasts. Biomaterials Science, 2022, 10, 3935-3950.	2.6	6
36	Cell-assembled extracellular matrix (CAM): a human biopaper for the biofabrication of pre-vascularized tissues able to connect to the host circulation in vivo. Biofabrication, 2022, 14, 015005.	3.7	5

NICOLAS L'HEUREUX

#	Article	IF	CITATIONS
37	Cytograft Tissue Engineering: a new paradigm in cardiovascular tissue engineering. Regenerative Medicine, 2008, 3, 471-475.	0.8	4
38	Clinical translation of tissue-engineered constructs for severe leg injuries. Annals of Translational Medicine, 2015, 3, 134.	0.7	3
39	Sheetâ€Based Tissue Engineering: From Bench Top to the First Clinical Use of a Completely Biological Tissue Engineered Blood Vessel. FASEB Journal, 2006, 20, A1077.	0.2	1