List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725597/publications.pdf Version: 2024-02-01

FELLU

#	Article	IF	CITATIONS
1	Tau pathology in Alzheimer disease and other tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 198-210.	3.8	786
2	Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. European Journal of Neuroscience, 2005, 22, 1942-1950.	2.6	657
3	O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10804-10809.	7.1	650
4	Tau and neurodegenerative disease: the story so far. Nature Reviews Neurology, 2016, 12, 15-27.	10.1	603
5	Mechanisms of tau-induced neurodegeneration. Acta Neuropathologica, 2009, 118, 53-69.	7.7	577
6	Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. Journal of Pathology, 2011, 225, 54-62.	4.5	401
7	Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain, 2009, 132, 1820-1832.	7.6	350
8	Microtubule-associated protein tau in development, degeneration and protection of neurons. Progress in Neurobiology, 2008, 85, 148-175.	5.7	341
9	Tau exon 10 alternative splicing and tauopathies. Molecular Neurodegeneration, 2008, 3, 8.	10.8	225
10	ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proceedings of the United States of America, 2008, 105, 20209-20214.	7.1	213
11	Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB Journal, 2008, 22, 3224-3233.	0.5	210
12	Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3β. FEBS Letters, 2002, 530, 209-214.	2.8	174
13	Siteâ€specific effects of tau phosphorylation on its microtubule assembly activity and selfâ€aggregation. European Journal of Neuroscience, 2007, 26, 3429-3436.	2.6	172
14	Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. Journal of Neurochemistry, 2009, 108, 1480-1494.	3.9	153
15	Truncation and Activation of Calcineurin A by Calpain I in Alzheimer Disease Brain. Journal of Biological Chemistry, 2005, 280, 37755-37762.	3.4	150
16	Tau passive immunization inhibits not only tau but also Aβ pathology. Alzheimer's Research and Therapy, 2017, 9, 1.	6.2	147
17	PP2A Regulates Tau Phosphorylation Directly and also Indirectly via Activating GSK-3β. Journal of Alzheimer's Disease, 2010, 19, 1221-1229.	2.6	143
18	Increased Dosage of Dyrk1A Alters Alternative Splicing Factor (ASF)-regulated Alternative Splicing of Tau in Down Syndrome. Journal of Biological Chemistry, 2008, 283, 28660-28669.	3.4	136

#	Article	IF	CITATIONS
19	Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13511-13516.	7.1	127
20	Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Letters, 2002, 512, 101-106.	2.8	123
21	Downâ€regulation of cAMPâ€dependent protein kinase by overâ€activated calpain in Alzheimer disease brain. Journal of Neurochemistry, 2007, 103, 2462-2470.	3.9	123
22	Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale, 2016, 8, 4452-4457.	5.6	118
23	PKA modulates GSK-3β- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Letters, 2006, 580, 6269-6274.	2.8	114
24	Hyperphosphorylation determines both the spread and the morphology ofÂtau pathology. Alzheimer's and Dementia, 2016, 12, 1066-1077.	0.8	112
25	Multifactorial Hypothesis and Multi-Targets for Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S107-S117.	2.6	112
26	Dephosphorylation of Tau by Protein Phosphatase 5. Journal of Biological Chemistry, 2005, 280, 1790-1796.	3.4	106
27	Activation of Asparaginyl Endopeptidase Leads to Tau Hyperphosphorylation in Alzheimer Disease. Journal of Biological Chemistry, 2013, 288, 17495-17507.	3.4	100
28	Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiology of Aging, 2015, 36, 188-200.	3.1	99
29	Alzheimer disease therapeutics: Focus on the disease and not just plaques and tangles. Biochemical Pharmacology, 2014, 88, 631-639.	4.4	95
30	Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I ₂ ^{PP2A} /SET. FEBS Letters, 2011, 585, 2653-2659.	2.8	94
31	Relevance of Phosphorylation and Truncation of Tau to the Etiopathogenesis of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 27.	3.4	86
32	Pathological Tau From Alzheimer's Brain Induces Site-Specific Hyperphosphorylation and SDS- and Reducing Agent-Resistant Aggregation of Tau in vivo. Frontiers in Aging Neuroscience, 2019, 11, 34.	3.4	85
33	Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Research, 2011, 39, 6161-6171.	14.5	84
34	Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1A (Dyrk1A) Modulates Serine/Arginine-rich Protein 55 (SRp55)-promoted Tau Exon 10 Inclusion. Journal of Biological Chemistry, 2012, 287, 30497-30506.	3.4	81
35	Hyperphosphorylation-Induced Tau Oligomers. Frontiers in Neurology, 2013, 4, 112.	2.4	80
36	Regulation of alternative splicing of tau exon 10. Neuroscience Bulletin, 2014, 30, 367-377.	2.9	80

#	Article	IF	CITATIONS
37	Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. Journal of Neural Transmission, 2015, 122, 607-617.	2.8	79
38	O lcNAcylation: A regulator of tau pathology and neurodegeneration. Alzheimer's and Dementia, 2016, 12, 1078-1089.	0.8	79
39	Developmental Regulation of Protein O-GlcNAcylation, O-GlcNAc Transferase, and O-GlcNAcase in Mammalian Brain. PLoS ONE, 2012, 7, e43724.	2.5	77
40	Cyclic AMP-dependent Protein Kinase Regulates the Alternative Splicing of Tau Exon 10. Journal of Biological Chemistry, 2011, 286, 14639-14648.	3.4	76
41	Differential Effects of an O-GlcNAcase Inhibitor on Tau Phosphorylation. PLoS ONE, 2012, 7, e35277.	2.5	76
42	Truncation and activation of GSK-3 \hat{I}^2 by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease. Scientific Reports, 2015, 5, 8187.	3.3	75
43	Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. Alzheimer's Research and Therapy, 2018, 10, 13.	6.2	73
44	Regulation between Oâ€GlcNAcylation and phosphorylation of neurofilamentâ€M and their dysregulation in Alzheimer disease. FASEB Journal, 2008, 22, 138-145.	0.5	72
45	Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Scientific Reports, 2015, 5, 15709.	3.3	71
46	Dephosphorylation of microtubuleâ€essociated protein tau by protein phosphatase 5. Journal of Neurochemistry, 2004, 88, 298-310.	3.9	66
47	Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Scientific Reports, 2017, 7, 619.	3.3	66
48	Dysregulation of Tau Phosphorylation in Mouse Brain during Excitotoxic Damage. Journal of Alzheimer's Disease, 2009, 17, 531-539.	2.6	65
49	Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies. Journal of Biological Chemistry, 2017, 292, 10600-10612.	3.4	63
50	O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Scientific Reports, 2015, 5, 14500.	3.3	60
51	Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p. Molecular Cell, 2015, 59, 541-552.	9.7	60
52	Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B. Free Radical Biology and Medicine, 2016, 101, 1-9.	2.9	60
53	Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau. Journal of Biological Chemistry, 2014, 289, 27677-27691.	3.4	59
54	Alzheimer's disease neurofibrillary degeneration: pivotal and multifactorial. Biochemical Society Transactions, 2010, 38, 962-966.	3.4	58

#	Article	IF	CITATIONS
55	Oâ€Glc <scp>NA</scp> cylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer's disease. Aging Cell, 2016, 15, 455-464.	6.7	57
56	Dysregulation of Protein Phosphorylation/Dephosphorylation in Alzheimer's Disease: A Therapeutic Target. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-11.	3.0	56
57	CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer's disease. Nucleic Acids Research, 2013, 41, 3240-3256.	14.5	55
58	Pathological Changes of Tau Related to Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 931-944.	3.5	54
59	Truncation of Tau selectively facilitates its pathological activities. Journal of Biological Chemistry, 2020, 295, 13812-13828.	3.4	54
60	Truncation and Activation of Dual Specificity Tyrosine Phosphorylation-regulated Kinase 1A by Calpain I. Journal of Biological Chemistry, 2015, 290, 15219-15237.	3.4	51
61	Regulation of alternative splicing of tau exon 10 by 9G8 and Dyrk1A. Neurobiology of Aging, 2012, 33, 1389-1399.	3.1	50
62	In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. International Journal of Nanomedicine, 2014, 9, 33.	6.7	50
63	Brain Gene Expression of a Sporadic (icv-STZ Mouse) and a Familial Mouse Model (3xTg-AD Mouse) of Alzheimer's Disease. PLoS ONE, 2012, 7, e51432.	2.5	47
64	Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model. Bone Research, 2014, 2, 14015.	11.4	47
65	TDP-43 suppresses tau expression via promoting its mRNA instability. Nucleic Acids Research, 2017, 45, 6177-6193.	14.5	45
66	A Parallel Excitation Based Fluorescence Molecular Tomography System for Whole-Body Simultaneous Imaging of Small Animals. Annals of Biomedical Engineering, 2010, 38, 3440-3448.	2.5	43
67	Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Frontiers in Aging Neuroscience, 2014, 6, 100.	3.4	41
68	Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis. Frontiers in Aging Neuroscience, 2017, 9, 311.	3.4	40
69	Decrease of Protein Phosphatase 2A and its Association with Accumulation and Hyperphosphorylation of Tau in Down Syndrome. Journal of Alzheimer's Disease, 2008, 13, 295-302.	2.6	39
70	Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. Journal of Biomedical Optics, 2014, 19, 046018.	2.6	39
71	Activation of Protein Phosphatase 2B and Hyperphosphorylation of Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 23, 617-627.	2.6	37
72	Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. Journal of Nutritional Biochemistry, 2020, 79, 108132.	4.2	37

#	Article	IF	CITATIONS
73	Diverse regulation of AKT and GSKâ€3β by Oâ€GlcNAcylation in various types of cells. FEBS Letters, 2012, 586, 2443-2450.	2.8	36
74	Chemical-sensitive graphene modulator with a memory effect for internet-of-things applications. Microsystems and Nanoengineering, 2016, 2, 16018.	7.0	36
75	Recent developments with tau-based drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 399-410.	5.0	35
76	Alzheimer's disease brain contains tau fractions with differential prion-like activities. Acta Neuropathologica Communications, 2021, 9, 28.	5.2	35
77	Novel lanthanide–polymer complexes for dye-free dual modal probes for MRI and fluorescence imaging. Polymer Chemistry, 2015, 6, 7949-7957.	3.9	33
78	Mechanism of Tau Hyperphosphorylation Involving Lysosomal Enzyme Asparagine Endopeptidase in a Mouse Model of Brain Ischemia. Journal of Alzheimer's Disease, 2018, 63, 821-833.	2.6	33
79	FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma. Cell Death and Disease, 2018, 9, 469.	6.3	33
80	O-GlcNAcylation Reduces Ischemia-Reperfusion–Induced Brain Injury. Scientific Reports, 2017, 7, 10686.	3.3	29
81	Pathological Alterations of Tau in Alzheimer's Disease and 3xTg-AD Mouse Brains. Molecular Neurobiology, 2019, 56, 6168-6183.	4.0	29
82	Fluorescence molecular tomography reconstruction via discrete cosine transform-based regularization. Journal of Biomedical Optics, 2015, 20, 055004.	2.6	25
83	GSK-3β is Dephosphorylated by PP2A in a Leu309 Methylation-Independent Manner. Journal of Alzheimer's Disease, 2015, 49, 365-375.	2.6	24
84	Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes. Frontiers in Aging Neuroscience, 2017, 9, 136.	3.4	24
85	Calpain I Activation Causes GLUT3 Proteolysis and Downregulation of O-GlcNAcylation in Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2018, 62, 1737-1746.	2.6	23
86	Cardioprotective effect of rosmarinic acid against myocardial ischaemia/reperfusion injury via suppression of the NF-κB inflammatory signalling pathway and ROS production in mice. Pharmaceutical Biology, 2021, 59, 220-229.	2.9	23
87	Optimal method for short-term or long-term islet preservation: comparison of islet culture, cold preservation and cryopreservation. Journal of Artificial Organs, 2014, 17, 337-343.	0.9	22
88	Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Letters, 2011, 585, 875-880.	2.8	21
89	An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography. Biomedical Optics Express, 2014, 5, 4039.	2.9	21
90	Up-regulation of casein kinase 1ε is involved in tau pathogenesis in Alzheimer's disease. Scientific Reports, 2017, 7, 13478.	3.3	21

#	Article	IF	CITATIONS
91	Excess Folic Acid Supplementation Before and During Pregnancy and Lactation Activates Fos Gene Expression and Alters Behaviors in Male Mouse Offspring. Frontiers in Neuroscience, 2019, 13, 313.	2.8	21
92	Involvement of Activation of Asparaginyl Endopeptidase in Tau Hyperphosphorylation in Repetitive Mild Traumatic Brain Injury. Journal of Alzheimer's Disease, 2018, 64, 709-722.	2.6	20
93	Cyclic AMPâ€dependent protein kinase regulates 9G8â€mediated alternative splicing of tau exon 10. FEBS Letters, 2012, 586, 2239-2244.	2.8	19
94	Luteolin Inhibits Behavioral Sensitization by Blocking Methamphetamine-Induced MAPK Pathway Activation in the Caudate Putamen in Mice. PLoS ONE, 2014, 9, e98981.	2.5	19
95	SIRT1 regulates O-GlcNAcylation of tau through OGT. Aging, 2020, 12, 7042-7055.	3.1	17
96	Extraction of target fluorescence signal from in vivo background signal using image subtraction algorithm. International Journal of Automation and Computing, 2012, 9, 232-236.	4.5	16
97	Tau in Alzheimer's Disease: Pathological Alterations and an Attractive Therapeutic Target. Current Medical Science, 2020, 40, 1009-1021.	1.8	16
98	Protein Phosphatase 1 dephosphorylates <scp>TDP</scp> â€43 and suppresses its function in tau exon 10 inclusion. FEBS Letters, 2018, 592, 402-410.	2.8	14
99	Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. International Journal for Parasitology, 2019, 49, 685-695.	3.1	13
100	Maternal Nicotine Exposure Alters Hippocampal Microglia Polarization and Promotes Anti-inflammatory Signaling in Juvenile Offspring in Mice. Frontiers in Pharmacology, 2021, 12, 661304.	3.5	13
101	Sirt1 enhances tau exon 10 inclusion and improves spatial memory of Htau mice. Aging, 2018, 10, 2498-2510.	3.1	13
102	Cyclic AMP-Dependent Protein Kinase Enhances SC35-Promoted Tau Exon 10 Inclusion. Molecular Neurobiology, 2014, 49, 615-624.	4.0	12
103	Câ€ŧerminal truncation of <scp>GSK</scp> â€3β enhances its dephosphorylation by <scp>PP</scp> 2A. FEBS Letters, 2017, 591, 1053-1063.	2.8	11
104	SIRT1 Deacetylates SC35 and Suppresses Its Function in Tau Exon 10 Inclusion. Journal of Alzheimer's Disease, 2017, 61, 561-570.	2.6	10
105	Maternal Nicotine Exposure During Gestation and Lactation Period Affects Behavior and Hippocampal Neurogenesis in Mouse Offspring. Frontiers in Pharmacology, 2019, 10, 1569.	3.5	10
106	O-ClcNAcylation modulates PKA-CREB signaling in a manner specific to PKA catalytic subunit isoforms. Biochemical and Biophysical Research Communications, 2018, 497, 194-199.	2.1	9
107	Elevation of casein kinase 1ε associated with TDPâ€43 and tau pathologies in Alzheimer's disease. Brain Pathology, 2020, 30, 283-297.	4.1	9
108	Ex-vivo treatment of allografts using adipose-derived stem cells induced prolonged rejection-free survival in an allogenic hind-limb transplantation model. Annals of Translational Medicine, 2020, 8, 867-867.	1.7	9

#	Article	IF	CITATIONS
109	Dephosphorylation Passivates the Seeding Activity of Oligomeric Tau Derived From Alzheimer's Brain. Frontiers in Molecular Neuroscience, 2021, 14, 631833.	2.9	9
110	Modified forward model for eliminating the time-varying impact in fluorescence molecular tomography. Journal of Biomedical Optics, 2014, 19, 056012.	2.6	8
111	Acceleration of dynamic fluorescence molecular tomography with principal component analysis. Biomedical Optics Express, 2015, 6, 2036.	2.9	8
112	InÂvitro examination of microglia-neuron crosstalk with BV2 cells, and primary cultures of glia and hypothalamic neurons. Heliyon, 2018, 4, e00730.	3.2	8
113	Subacute to chronic Alzheimer-like alterations after controlled cortical impact in human tau transgenic mice. Scientific Reports, 2019, 9, 3789.	3.3	8
114	Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction. Applied Optics, 2012, 51, 8883.	1.8	7
115	Cyclic AMP-Dependent Protein Kinase Phosphorylates TDP-43 and Modulates Its Function in Tau mRNA Processing. Journal of Alzheimer's Disease, 2019, 70, 1093-1102.	2.6	6
116	Phosphorylation of transâ€active response DNAâ€binding proteinâ€of 43ÂkDa promotes its cytoplasmic aggregation and modulates its function in tau mRNA stability and exon 10 alternative splicing. Journal of Neurochemistry, 2021, 158, 766-778.	3.9	6
117	Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging, 2019, 11, 9672-9688.	3.1	6
118	Nonâ€vitamin K oral anticoagulants versus vitamin K antagonists in post transcatheter aortic valve replacement patients with clinical indication for oral anticoagulation: A metaâ€analysis. Clinical Cardiology, 2022, 45, 401-406.	1.8	5
119	Conditioned Medium from Adipose-Derived Stem Cell Inhibits Jurkat Cell Proliferation through TGF- <i>î²</i> 1 and p38/MAPK Pathway. Analytical Cellular Pathology, 2019, 2019, 1-6.	1.4	4
120	Seeding-Competent Tau in Gray Matter Versus White Matter of Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2021, 79, 1647-1659.	2.6	4
121	Excess folic acid supplementation before and during pregnancy and lactation activates β-catenin in the brain of male mouse offspring. Brain Research Bulletin, 2022, 178, 133-143.	3.0	4
122	Rbfox3/NeuN Regulates Alternative Splicing of Tau Exon 10. Journal of Alzheimer's Disease, 2018, 66, 1695-1704.	2.6	3
123	Expression of Microtubule Associated Protein Tau in Mouse Pancreatic Islets Is Restricted to Autonomic Nerve Fibers. Journal of Alzheimer's Disease, 2020, 75, 1339-1349.	2.6	3
124	Monitoring of tumor response to cisplatin with simultaneous fluorescence and positron emission tomography: a feasibility study. Journal of Biophotonics, 2014, 7, 889-896.	2.3	2
125	Effect of Peripheral Insulin Administration on Phosphorylation of Tau in the Brain. Journal of Alzheimer's Disease, 2020, 75, 1377-1390.	2.6	2
126	Vitamin D3 reduces hippocampal NR2A and anxiety in nicotine withdrawal mice. Translational Neuroscience, 2021, 12, 273-281.	1.4	2

#	Article	IF	CITATIONS
127	AKT/CSK-3β signaling is altered through downregulation of mTOR during cerebral Ischemia/Reperfusion injury. Molecular Biology Reports, 2022, , 1.	2.3	2
128	P3â€183: RELEVANCE OF PHOSPHORYLATION AND TRUNCATION OF TAU TO THE ETIOPATHOGENESIS OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1137.	0.8	1
129	Rats Display Sexual Dimorphism in Phosphorylation of Brain Tau with Age. Journal of Alzheimer's Disease, 2021, 82, 855-869.	2.6	1
130	Does proteopathic tau propagate trans-synaptically in the brain?. Molecular Neurodegeneration, 2022, 17, 21.	10.8	1
131	Image reconstruction for synchronous data acquisition in fluorescence molecular tomography. Journal of X-Ray Science and Technology, 2015, 23, 463-472.	1.0	0
132	O2-12-03: Regulation of alternative splicing of tau exon 10 by dual-specificity tyrosine-phosphorylation-regulated kinase 1A. , 2015, 11, P203-P203.		0
133	O5â€06â€01: TDPâ€43 Suppresses TAU Expression VIA Promoting its Mrna Instability. Alzheimer's and Dementia, 2016, 12, P390.	0.8	0
134	[O2–02–05]: Câ€TERMINAL TRUNCATION OF GSKâ€3β ENHANCES ITS DEPHOSPHORYLATION BY PP2A. Alzl and Dementia, 2017, 13, P553.	neimer's 0.8	0
135	P3â€185: INVOLVEMENT OF ACTIVATION OF ASPARAGINYL ENDOPEPTIDASE IN TAU HYPERPHOSPHORYLATION I TRAUMATIC BRAIN INJURY. Alzheimer's and Dementia, 2018, 14, P1138.	N _{0.8}	0
136	Why delay in effective treatment for Alzheimer's disease and related conditions. Progress in Molecular Biology and Translational Science, 2019, 168, 243-256.	1.7	0
137	Tau in Health and Neurodegenerative Diseases. , 0, , .		0
138	N-Butylphthalide vs. Human Urinary Kallidinogenase for the Treatment of Acute Ischemic Stroke: Functional Outcome and Impact on Serum VEGF and TNF-α Expressions. Annals of Clinical and Laboratory Science, 2021, 51, 503-511.	0.2	0