Vincent Lemaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725527/publications.pdf

Version: 2024-02-01

		257450]	38484
59	3,623	24		58
papers	citations	h-index		g-index
60	60	60		5103
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Highâ€Efficiency Ionâ€Exchange Doping of Conducting Polymers. Advanced Materials, 2022, 34, e2102988.	21.0	67
2	White light emitting silsesquioxane based materials: the importance of a ligand with rigid and directional arms. Materials Advances, 2022, 3, 570-578.	5.4	3
3	Tuning Short Contacts between Polymer Chains To Enhance Charge Transport in Amorphous Donor–Acceptor Polymers. Journal of Physical Chemistry C, 2022, 126, 3118-3126.	3.1	8
4	Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers. Journal of the American Chemical Society, 2022, 144, 3005-3019.	13.7	45
5	Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Fieldâ€Effect Transistors. Advanced Science, 2022, 9, e2105674.	11.2	6
6	Doping of semicrystalline conjugated polymers: dopants within alkyl chains do it better. Journal of Materials Chemistry C, 2022, 10, 13815-13825.	5.5	8
7	Revealing the Organization of Catalytic Sequence-Defined Oligomers via Combined Molecular Dynamics Simulations and Network Analysis. Journal of Chemical Information and Modeling, 2022, 62, 2761-2770.	5.4	5
8	Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nature Communications, 2022, 13, .	12.8	14
9	Thermal conductivity of benzothieno-benzothiophene derivatives at the nanoscale. Nanoscale, 2021, 13, 3800-3807.	5.6	12
10	Analysis of External and Internal Disorder to Understand Bandâ€Like Transport in nâ€Type Organic Semiconductors. Advanced Materials, 2021, 33, 2007870.	21.0	24
11	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Science Advances, 2021, 7, .	10.3	28
12	Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Lowâ€Disorder Molecular Semiconductors. Advanced Materials, 2021, 33, e2008708.	21.0	12
13	Monosaccharides Dehydration Assisted by Formation of Borate Esters of α-Hydroxyacids in Choline Chloride-Based Low Melting Mixtures. Frontiers in Chemistry, 2020, 8, 569.	3.6	7
14	Luminescent Dinuclear Copper(I) Complexes Bearing an Imidazolylpyrimidine Bridging Ligand. Inorganic Chemistry, 2020, 59, 14772-14784.	4.0	26
15	Linking triptycene to silole: a fruitful association. Materials Chemistry Frontiers, 2020, 4, 2006-2017.	5.9	3
16	Carbene–Metal–Amide Polycrystalline Materials Feature Blue Shifted Energy yet Unchanged Kinetics of Emission. Chemistry of Materials, 2020, 32, 4743-4753.	6.7	25
17	Stereoselective ROP of rac- and meso-Lactides Using Achiral TBD as Catalyst. Catalysts, 2020, 10, 620.	3.5	15
18	Sodium Coordination and Protonation of Poly(ethoxy phosphate) Chains in the Gas Phase Probed by Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 633-641.	2.8	4

#	Article	IF	CITATIONS
19	Design, Characterization and Molecular Modeling of New Fluorinated Paramagnetic Contrast Agents for Dual 1H/19F MRI. Magnetochemistry, 2020, 6, 8.	2.4	6
20	Helicity of Peptoid Ions in the Gas Phase. Biomacromolecules, 2020, 21, 903-909.	5 . 4	7
21	Effects of electrospray mechanisms and structural relaxation on polylactide ion conformations in the gas phase: insights from ion mobility spectrometry and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 4193-4204.	2.8	9
22	lon mobility mass spectrometry of saponin ions. Rapid Communications in Mass Spectrometry, 2019, 33, 22-33.	1.5	17
23	Resilience to Conformational Fluctuations Controls Energetic Disorder in Conjugated Polymer Materials: Insights from Atomistic Simulations. Chemistry of Materials, 2019, 31, 6889-6899.	6.7	30
24	Repurposing DNA-binding agents as H-bonded organic semiconductors. Nature Communications, 2019, 10, 4217.	12.8	28
25	Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nature Communications, 2019, 10, 597.	12.8	253
26	Polaron spin dynamics in high-mobility polymeric semiconductors. Nature Physics, 2019, 15, 814-822.	16.7	40
27	One Step Further in the Characterization of Synthetic Polymers by Ion Mobility Mass Spectrometry: Evaluating the Contribution of End-groups. Polymers, 2019, 11, 688.	4.5	11
28	Simple Approach for a Self-Healable and Stiff Polymer Network from Iminoboronate-Based Boroxine Chemistry. Chemistry of Materials, 2019, 31, 3736-3744.	6.7	87
29	Comprehensive modelling study of singlet exciton diffusion in donor–acceptor dyads: when small changes in chemical structure matter. Physical Chemistry Chemical Physics, 2019, 21, 25023-25034.	2.8	14
30	Backbone Cleavages of Protonated Peptoids upon Collision-Induced Dissociation: Competitive and Consecutive B-Y and A ₁ -Y _X Reactions. Journal of the American Society for Mass Spectrometry, 2019, 30, 2726-2740.	2.8	3
31	Discrimination of positional isomers by ion mobility mass spectrometry: application to organic semiconductors. Analytical Methods, 2018, 10, 2303-2306.	2.7	2
32	Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host–Guest Complexes. Journal of the American Society for Mass Spectrometry, 2018, 29, 121-132.	2.8	9
33	PEPDROID: Development of a Generic DREIDINGâ€Based Force Field for the Assessment of Peptoid Secondary Structures. Advanced Theory and Simulations, 2018, 1, 1800089.	2.8	21
34	Correlation between the shape of the ion mobility signals and the stepwise folding process of polylactide ions. Journal of Mass Spectrometry, 2017, 52, 133-138.	1.6	25
35	Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration. Analytical and Bioanalytical Chemistry, 2017, 409, 3115-3126.	3.7	20
36	Photochemistry of ruthenium(<scp>ii</scp>) complexes based on 1,4,5,8-tetraazaphenanthrene and 2,2′-bipyrazine: a comprehensive experimental and theoretical study. Dalton Transactions, 2017, 46, 6623-6633.	3.3	23

3

#	Article	IF	CITATIONS
37	Potential of polymethacrylate pseudo crown ethers as solid state polymer electrolytes. Chemical Communications, 2017, 53, 6899-6902.	4.1	14
38	Measurements of Ambipolar Seebeck Coefficients in Highâ€Mobility Diketopyrrolopyrrole Donor–Acceptor Copolymers. Advanced Electronic Materials, 2017, 3, 1700225.	5.1	26
39	Influence of Equilibration Time in Solution on the Inclusion/Exclusion Topology Ratio of Host–Guest Complexes Probed by Ion Mobility and Collisionâ€Induced Dissociation. Chemistry - A European Journal, 2016, 22, 4528-4534.	3.3	15
40	Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2â€ <i>b</i>][1]benzothiophene. Advanced Materials, 2016, 28, 7106-7114.	21.0	138
41	Neutral Mononuclear Copper(I) Complexes: Synthesis, Crystal Structures, and Photophysical Properties. Inorganic Chemistry, 2016, 55, 5845-5852.	4.0	45
42	Charge Carrier Mobility: Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene (Adv.) Tj ETQq0 0	0 r g℞ Ђ/Оა	verlock 10 Tf
43	Parameters influencing the photo-induced electron transfer from tryptophan-containing peptides to a Ru ^{II} complex: a systematic study. Faraday Discussions, 2015, 185, 267-284.	3.2	4
44	Efficiency of DBU/iodine cooperative dual catalysis for the solvent-free synthesis of five-membered cyclic carbonates under atmospheric CO2 pressure. Journal of CO2 Utilization, 2015, 10, 7-11.	6.8	35
45	Bulky Endâ€Capped [1]Benzothieno[3,2â€∢i>b⟨/i>]benzothiophenes: Reaching Highâ€Mobility Organic Semiconductors by Fine Tuning of the Crystalline Solidâ€State Order. Advanced Materials, 2015, 27, 3066-3072.	21.0	155
46	Photoaddition of Two Guanine Bases to Single Ru-TAP Complexes. Computational Studies and Ultrafast Spectroscopies to Elucidate the pH Dependence of Primary Processes. Journal of Physical Chemistry B, 2015, 119, 4488-4500.	2.6	15
47	Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: synthesis, characterization and electronic properties. Journal of Materials Chemistry C, 2015, 3, 674-685.	5.5	62
48	On the Relation between Morphology and FET Mobility of Poly(3â€alkylthiophene)s at the Polymer/SiO ₂ and Polymer/Air Interface. Advanced Functional Materials, 2014, 24, 1994-2004.	14.9	17
49	Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515, 384-388.	27.8	844
50	A one-pot two-step efficient metal-free process for the generation of PEO-b-PCL-b-PLA amphiphilic triblock copolymers. RSC Advances, 2014, 4, 10028.	3.6	28
51	Homotropic Allosterism: Inâ€Depth Structural Analysis of the Gasâ€Phase Noncovalent Complexes Associating a Doubleâ€Cavity Cucurbit[<i>n</i>) Jurilâ€Type Host and Sizeâ€Selected Protonated Amino Compounds. ChemPlusChem, 2013, 78, 959-969.	2.8	16
52	Asymmetric electron and hole transport in a high-mobility <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -type conjugated polymer. Physical Review B, 2012, 86,	3.2	63
53	Synthesis of poly(<scp>l</scp> -lactide) and gradient copolymers from a <scp>l</scp> -lactide/trimethylene carbonate eutectic melt. Chemical Science, 2012, 3, 723-726.	7.4	45
54	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. Physical Review B, 2011, 84, .	3.2	39

VINCENT LEMAUR

#	Article	IF	CITATIONS
55	Size Dependence of the Folding of Multiply Charged Sodium Cationized Polylactides Revealed by Ion Mobility Mass Spectrometry and Molecular Modelling. Chemistry - A European Journal, 2011, 17, 9738-9745.	3.3	41
56	Photoinduced Charge Generation and Recombination Dynamics in Model Donor/Acceptor Pairs for Organic Solar Cell Applications:  A Full Quantum-Chemical Treatment. Journal of the American Chemical Society, 2005, 127, 6077-6086.	13.7	314
57	Charge Transport Properties in Discotic Liquid Crystals:  A Quantum-Chemical Insight into Structureâ^'Property Relationships. Journal of the American Chemical Society, 2004, 126, 3271-3279.	13.7	464
58	Electronic and optical properties of polyfluorene and fluorene-based copolymers: A quantum-chemical characterization. Journal of Chemical Physics, 2003, 118, 6615-6623.	3.0	160
59	Charge Transport in Discotic Liquid Crystals: A Molecular Scale Description. Advanced Materials, 2002, 14, 726.	21.0	166