
Enbo Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1725300/publications.pdf Version: 2024-02-01

ENBO 7HL

#	Article	IF	CITATIONS
1	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	6.0	1,623
2	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	6.0	1,292
3	Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696-700.	13.7	1,279
4	Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. Journal of the American Chemical Society, 2012, 134, 12326-12329.	6.6	451
5	Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Letters, 2015, 15, 3030-3034.	4.5	362
6	Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.	13.7	323
7	Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. Nano Letters, 2015, 15, 6295-6301.	4.5	246
8	A Facile Strategy to Pt ₃ Ni Nanocrystals with Highly Porous Features as an Enhanced Oxygen Reduction Reaction Catalyst. Advanced Materials, 2013, 25, 2974-2979.	11.1	232
9	Morphology and Phase Controlled Construction of Pt–Ni Nanostructures for Efficient Electrocatalysis. Nano Letters, 2016, 16, 2762-2767.	4.5	176
10	Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability. Angewandte Chemie - International Edition, 2013, 52, 12577-12581.	7.2	174
11	A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy and Environmental Science, 2014, 7, 2957-2962.	15.6	172
12	Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science, 2018, 362, 1135-1139.	6.0	155
13	Palladiumâ€Based Nanostructures with Highly Porous Features and Perpendicular Pore Channels as Enhanced Organic Catalysts. Angewandte Chemie - International Edition, 2013, 52, 2520-2524.	7.2	147
14	Synthesis of Stable Shape-Controlled Catalytically Active β-Palladium Hydride. Journal of the American Chemical Society, 2015, 137, 15672-15675.	6.6	117
15	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. Nano Letters, 2016, 16, 6337-6342.	4.5	117
16	Tailoring Molecular Specificity Toward a Crystal Facet: a Lesson From Biorecognition Toward Pt{111}. Nano Letters, 2013, 13, 840-846.	4.5	101
17	Few‣ayer GeAs Fieldâ€Effect Transistors and Infrared Photodetectors. Advanced Materials, 2018, 30, e1705934.	11.1	100
18	Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets. Nano Letters, 2015, 15, 7519-7525.	4.5	82

Емво Zhu

#	Article	IF	CITATIONS
19	Hollow Loofahâ€Like N, Oâ€Coâ€Doped Carbon Tube for Electrocatalysis of Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1900015.	7.8	68
20	In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Research, 2016, 9, 149-157.	5.8	64
21	Tungsten as "Adhesive―in Pt ₂ CuW _{0.25} Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2020, 30, 1908230.	7.8	59
22	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 14449.	5.2	58
23	Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nature Catalysis, 2022, 5, 513-523.	16.1	57
24	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Scientific Reports, 2013, 3, .	1.6	45
25	Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective Electrocatalysts. Nano Letters, 2019, 19, 3730-3736.	4.5	44
26	Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances, 2021, 7, .	4.7	44
27	Highly Reliable Low-Voltage Memristive Switching and Artificial Synapse Enabled by van der Waals Integration. Matter, 2020, 2, 965-976.	5.0	40
28	Stability of Platinumâ€Groupâ€Metalâ€Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	7.8	25
29	Spontaneous crystallization of a new chiral open-framework borophosphate in the ionothermal system. Dalton Transactions, 2010, 39, 1713.	1.6	24
30	Maximizing the Current Output in Self-Aligned Graphene–InAs–Metal Vertical Transistors. ACS Nano, 2019, 13, 847-854.	7.3	23
31	Long-Range Hierarchical Nanocrystal Assembly Driven by Molecular Structural Transformation. Journal of the American Chemical Society, 2019, 141, 1498-1505.	6.6	21
32	Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis. Chemistry of Materials, 2021, 33, 3639-3649.	3.2	20
33	Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Research, 2020, 13, 3310-3314.	5.8	17
34	Pt x Cu y nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Research, 2015, 8, 3342-3352.	5.8	16
35	<scp>Heterojunctionâ€₹ype</scp> Photocatalytic System Based on Inorganic Halide Perovskite <scp>CsPbBr₃</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1718-1722.	2.6	16
36	Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2021, 9, 699861.	1.8	6

#	Article	IF	CITATIONS
37	Gold Clusters Alloyed to Nanoporous Palladium Surfaces as Highly Active Bimetallic Oxidation Catalysts. ChemSusChem, 2013, 6, 1868-1872.	3.6	2