
Thanh-Huy Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724973/publications.pdf Version: 2024-02-01

Тилин-Них Рилм

#	Article	IF	CITATIONS
1	Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Materials Science and Engineering C, 2010, 30, 910-916.	7.3	103
2	Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Current Applied Physics, 2010, 10, 910-916.	2.4	73
3	Mixed SnO2/TiO2 included with carbon nanotubes for gas-sensing application. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 258-263.	2.7	67
4	Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence. Journal of Alloys and Compounds, 2019, 791, 722-729.	5.5	63
5	Near-infrared emission from ZnO nanorods grown by thermal evaporation. Journal of Luminescence, 2014, 156, 199-204.	3.1	44
6	Magnetic properties of sol-gel synthesized C-doped ZnO nanoparticles. Journal of Alloys and Compounds, 2016, 668, 87-90.	5.5	37
7	Effects of carbon on optical properties of ZnO powder. Journal of Luminescence, 2016, 174, 6-10.	3.1	35
8	Photoluminescent properties of red-emitting phosphor BaMgAl10O17:Cr3+ for plant growth LEDs. Optical Materials, 2020, 108, 110207.	3.6	35
9	Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2950-2958.	2.7	34
10	Enhanced Photoelectrochemical Activity of the TiO ₂ /ITO Nanocomposites Grown onto Singleâ€Walled Carbon Nanotubes at a Low Temperature by Nanocluster Deposition. Advanced Materials, 2011, 23, 5557-5562.	21.0	33
11	Co-precipitation synthesis and optical properties of green-emitting Ba2MgSi2O7:Eu2+ phosphor. Journal of Luminescence, 2014, 147, 358-362.	3.1	30
12	A high quantum efficiency plant growth LED by using a deep-red-emitting α-Al ₂ O ₃ :Cr ³⁺ phosphor. Dalton Transactions, 2021, 50, 12570-12582.	3.3	28
13	Novel silver nanoparticles: synthesis, properties and applications. International Journal of Nanotechnology, 2011, 8, 278.	0.2	26
14	A magnetic sensor using a 2D van der Waals ferromagnetic material. Scientific Reports, 2020, 10, 4789.	3.3	23
15	Origin of Rashba Spin-Orbit Coupling in 2D and 3D Lead Iodide Perovskites. Scientific Reports, 2020, 10, 4964.	3.3	23
16	Fabrication of a silicon nanostructure-based light emitting device. Journal of Family Business Management, 2010, 1, 025006.	3.4	22
17	Facile synthesis of single phase α-Zn2SiO4:Mn2+ phosphor via high-energy planetary ball milling and post-annealing method. Journal of Luminescence, 2019, 215, 116612.	3.1	21
18	Photoluminescence characteristics of as-synthesized and annealed ZnS:Cu,Al nanocrystals. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035008.	1.5	19

#	Article	IF	CITATIONS
19	Deep Red Emitting MgAl2O4:Cr3+ Phosphor for Solid State Lighting. Journal of Electronic Materials, 2019, 48, 5891-5899.	2.2	19
20	Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering. Journal of Non-Crystalline Solids, 2009, 355, 1176-1179.	3.1	18
21	Mn2+- doped Zn2SnO4 green phosphor for WLED applications. Journal of Luminescence, 2020, 227, 117522.	3.1	18
22	Local Structure and Chemistry of Câ€Doped ZnO@C Core–Shell Nanostructures with Roomâ€Temperature Ferromagnetism. Advanced Functional Materials, 2018, 28, 1704567.	14.9	17
23	One-dimensional protuberant optically active ZnO structure fabricated by oxidizing ZnS nanowires. Materials Letters, 2010, 64, 1650-1652.	2.6	16
24	Structural and optical properties of Si-nanoclusters embedded in silicon dioxide. Physica B: Condensed Matter, 2006, 376-377, 868-871.	2.7	14
25	Synthesis of Y ₂ O ₃ :Eu ³⁺ micro- and nanophosphors by sol-gel process. Journal of Physics: Conference Series, 2009, 187, 012074.	0.4	14
26	Enhancing the luminescence of Eu ³ ⁺ /Eu ² ⁺ ionâ€doped hydroxyapatite by fluoridation and thermal annealing. Luminescence, 2017, 32, 817-823.	2.9	14
27	Hydrothermal synthesis, structure, and photocatalytic properties of SnO ₂ /rGO nanocomposites with different GO concentrations. Materials Research Express, 2018, 5, 095506.	1.6	14
28	Emission-tunable Mn-doped ZnS/ZnO heterostructure nanobelts for UV-pump WLEDs. Optical Materials, 2021, 121, 111587.	3.6	14
29	Synthesis and Optical Properties of ZnS Nanostructures. Journal of the Korean Physical Society, 2008, 52, 1562-1565.	0.7	14
30	Strong Rashbaâ€Dresselhaus Effect in Nonchiral 2D Ruddlesdenâ€Popper Perovskites. Advanced Optical Materials, 2022, 10, 2101232.	7.3	14
31	Complexes of gold and platinum with hydrogen in silicon. Physica B: Condensed Matter, 2001, 302-303, 233-238.	2.7	13
32	Synthesis and optical properties of red/blue-emitting Sr2MgSi2O7:Eu3+/Eu2+ phosphors for white LED. Journal of Science: Advanced Materials and Devices, 2016, 1, 204-208.	3.1	13
33	Structural evolution and optical properties of oxidized ZnS microrods. Journal of Alloys and Compounds, 2016, 676, 150-155.	5.5	13
34	Excitation energy dependence of the life time of orange emission from Mn-doped ZnS nanocrystals. Journal of Luminescence, 2018, 199, 39-44.	3.1	13
35	Correlation length in a generalized two-dimensional XY model. Physical Review B, 2018, 98, .	3.2	13
36	Synthesis and thermoelectric properties of Ti-substituted (Hf0.5Zr0.5)1-xTixNiSn0.998Sb0.002 Half-Heusler compounds. Journal of Alloys and Compounds, 2019, 773, 1141-1145.	5.5	13

#	Article	IF	CITATIONS
37	Single-composition Al ³⁺ -singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications. Dalton Transactions, 2021, 50, 9037-9050.	3.3	12
38	Electronic and atomic structure of transition-metal–hydrogen complexes in silicon. Physica B: Condensed Matter, 2001, 308-310, 408-413.	2.7	11
39	Luminescence of one dimensional ZnO, GeO2–Zn2GeO4 nanostructure through thermal evaporation of Zn and Ge powder mixture. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 209, 17-22.	3.5	11
40	Probing the origin of green emission in 1D ZnS nanostructures. Journal of Luminescence, 2016, 169, 165-172.	3.1	11
41	Understanding ferromagnetism in C-doped CdS: Monte Carlo simulation. Journal of Alloys and Compounds, 2017, 695, 1624-1630.	5.5	11
42	Silicon nanowires prepared by thermal evaporation and their photoluminescence properties measured at low temperatures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 015016.	1.5	10
43	X-site aliovalent substitution decoupled charge and phonon transports in XYZ half-Heusler thermoelectrics. Acta Materialia, 2019, 166, 650-657.	7.9	10
44	Controlled synthesis and luminescence of Eu doped ZnO nanowires and nanorods via hydrothermal method. Journal of Physics: Conference Series, 2009, 187, 012022.	0.4	9
45	Photochemical synthesis of highly bactericidal silver nanoparticles. Nanotechnologies in Russia, 2010, 5, 554-563.	0.7	9
46	On the origin of green emission in zinc sulfide nanowires prepared by a thermal evaporation method. Journal of Luminescence, 2014, 153, 321-325.	3.1	9
47	Effect of substrate temperature on structural and optical properties of ZnO nanostructures grown by thermal evaporation method. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 174-179.	2.7	9
48	Electron-paramagnetic-resonance studies of defects in electron-irradiated p-type 4H and 6H SiC. Physica B: Condensed Matter, 1999, 273-274, 655-658.	2.7	8
49	Synthesis and Optical Properties of Eu2+ and Eu3+ Doped SrBP Phosphors Prepared by Using a Co-precipitation Method for White Light-Emitting Devices. Journal of Electronic Materials, 2016, 45, 3356-3360.	2.2	8
50	Hydrogen passivation of the selenium double donor in silicon:â€,A study by magnetic resonance. Physical Review B, 2000, 61, 7448-7458.	3.2	7
51	Magnetic resonance investigation of gold-doped and gold-hydrogen-doped silicon. Physical Review B, 2002, 66, .	3.2	7
52	Synthesis and Photoluminescence Properties of Deep-Red-Emitting CaYAlO4:Cr3+ Phosphors. Journal of Electronic Materials, 2020, 49, 7464-7471.	2.2	7
53	Giant magnetoimpedance in layered composite micro-wires for high-sensitivity magnetic sensor applications. Journal of Physics: Conference Series, 2009, 187, 012044.	0.4	6
54	Graphene and its one-dimensional patterns: from basic properties towards applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 033001.	1.5	6

#	Article	IF	CITATIONS
55	Lasing from ZnO Nanocrystals in ZnO-ZnS Microbelts. Journal of Electronic Materials, 2017, 46, 3295-3300.	2.2	6
56	Enhanced ferromagnetism in graphite-like carbon layer-coated ZnO crystals. Journal of Alloys and Compounds, 2017, 695, 233-237.	5.5	6
57	Controlling Blue and Red Light Emissions from Europium (Eu2+)/Manganese (Mn2+)-Codoped Beta-Tricalcium Phosphate [β-Ca3(PO4)2 (TCP)] Phosphors. Journal of Electronic Materials, 2018, 47, 2964-2969.	2.2	6
58	Orangeâ€Redâ€emitting Ca ₉ Gd(PO ₄) ₇ :Eu ³⁺ Phosphors: Juddâ€Ofelt Analysis and Investigation on the Thermal Stability, Quantum Efficiency for WLED. ChemistrySelect, 2021, 6, 937-944.	1.5	6
59	Strain-modulated helimagnetism and emergent magnetic phase diagrams in highly crystalline MnP nanorod films. Physical Review B, 2021, 103, .	3.2	6
60	Enhanced thermoelectric properties of Hf-free half-Heusler compounds prepared via highly fast process. Journal of Alloys and Compounds, 2021, 886, 161293.	5.5	6
61	Layered structure in core–shell silicon nanowires. Journal of Luminescence, 2014, 154, 46-50.	3.1	5
62	Effect of doping concentration and sintering temperature on structure and photoluminescence properties of blue/red emitting bi-phase Eu ³⁺ /Eu ²⁺ -doped Sr ₅ (PO ₄) ₃ Cl/Sr ₃ (PO ₄) ₂ mode statements and statements an	. 1.6	5
63	Magnetically tunable organic semiconductors with superparamagnetic nanoparticles. Materials Horizons, 2019, 6, 1913-1922.	12.2	5
64	Pd ₈₀ Co ₂₀ Nanohole Arrays Coated with Poly(methyl methacrylate) for High-Speed Hydrogen Sensing with a Part-per-Billion Detection Limit. ACS Applied Nano Materials, 2021, 4, 3664-3674.	5.0	5
65	In situ observation of phase transformation in iron carbide nanocrystals. Micron, 2018, 104, 61-65.	2.2	4
66	Achieving High Luminescent Performance K2SiF6:Mn4+ Phosphor by Co-precipitation Process with Controlling the Reaction Temperature. Journal of Electronic Materials, 2018, 47, 4634-4641.	2.2	4
67	Effect of potting materials on LED bulb's driver temperature. Microelectronics Reliability, 2018, 86, 77-81.	1.7	4
68	High thermoelectric power factor in SnSe ₂ thin film grown on Al ₂ O ₃ substrate. Materials Research Express, 2019, 6, 066420.	1.6	4
69	Structural relaxation time and dynamic shear modulus of glassy graphene. Journal of Non-Crystalline Solids, 2020, 538, 120024.	3.1	4
70	Synthesis, structural and optical properties of ZnS/ZnO heterostructure-alloy hexagonal micropyramids. Optical Materials, 2022, 125, 112077.	3.6	4
71	Luminescence Properties of ZnS Nanoparticles and Porous Nanospheres Synthesized via Co-Precipitation and Hydrothermal Route. E-Journal of Surface Science and Nanotechnology, 2011, 9, 521-525.	0.4	3
72	Raman photoluminescence spectra of silicon nanowires synthesized by a vapor phase transport method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035004.	1.5	3

#	Article	IF	CITATIONS
73	Strong luminescence from nanoporous Si with high degree of nanoporous structure by electrochemical etching of Si wafer. Materials Letters, 2015, 142, 126-129.	2.6	3
74	Influence of Annealing Temperature and Gd and Eu Concentrations on Structure and Luminescence Properties of (Y,Gd)BO3:Eu3+ Phosphors Prepared by Sol–Gel Method. Journal of Electronic Materials, 2017, 46, 3427-3432.	2.2	3
75	Atomic and electronic structure of hydrogen-passivated double selenium donors in silicon. Physica B: Condensed Matter, 1999, 273-274, 239-242.	2.7	2
76	Erbium-Activated Silica-Hafnia: a Reliable Photonic System. , 2008, , .		2
77	Sol–gel synthesis and photoluminescence of SiO ₂ –Si:Er ³⁺ nanocomposite films. Materials Research Express, 2017, 4, 036205.	1.6	2
78	Fabrication and Spectroscopic Properties of Glass-Based Erbium Activated Micro-Nano Photonic Structures. , 2008, , .		1
79	Structural and photoluminescent properties of nanosized BaMgAl 10 O 17 :Eu 2+ blue-emitting phosphors prepared by sol-gel method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 035013.	1.5	1
80	Luminescence of Nanoporous Si and ALD-Deposited ZnO on Nanoporous Si Substrate. Journal of Electronic Materials, 2017, 46, 4784-4790.	2.2	1
81	MnP Films with Desired Magnetic, Magnetocaloric, and Thermoelectric Properties for a Perspective Magnetoâ€Thermoâ€Electric Cooling Device. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100367.	1.8	1
82	High transmittance and excellent hardness TiO ₂ â€SiO ₂ â€Al ₂ O ₃ nanocomposite thin film for antiâ€scratch surface applications. Polymer Composites, 0, , .	4.6	1
83	Nanocomposite Photonic Glasses, Waveguiding Glass Ceramics and Confined Structures Tailoring Er3+ Spectroscopic Properties. , 2007, , .		О
84	White photoluminescence from Si/SiO ₂ nanostructured film. Physica Status Solidi (B): Basic Research, 2008, 245, 2708-2711.	1.5	0
85	Monte Carlo Study of Room-Temperature Ferromagnetism in C-Doped ZnO. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	О
86	Photoluminescence and Cathodoluminescence Characterization of Ge/GeO2 Nanostructure Synthesized by Thermal Evaporation of Ge Powder. Journal of Applied Spectroscopy, 2016, 83, 665-668.	0.7	0
87	A versatile approach to synthesise optically active hierarchical ZnS/ZnO heterostructures. International Journal of Nanotechnology, 2018, 15, 222.	0.2	0