## Elaine C Paris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724894/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Applied Catalysis B: Environmental, 2014, 144, 800-808.                                 | 10.8 | 202       |
| 2  | Structural and optical properties of CaTiO3 perovskite-based materials obtained by<br>microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Materialia,<br>2009, 57, 5174-5185.               | 3.8  | 194       |
| 3  | Photoluminescence of disordered ABO3 perovskites. Applied Physics Letters, 2000, 77, 824-826.                                                                                                                                    | 1.5  | 171       |
| 4  | Hierarchical Assembly of CaMoO <sub>4</sub> Nano-Octahedrons and Their Photoluminescence<br>Properties. Journal of Physical Chemistry C, 2011, 115, 5207-5219.                                                                   | 1.5  | 130       |
| 5  | Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Advanced Powder Technology, 2010, 21, 197-202.                                                                              | 2.0  | 110       |
| 6  | Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Materials Chemistry and Physics, 2009, 117, 192-198.                                                                        | 2.0  | 96        |
| 7  | Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging:<br>Characterization of Physico-Chemical and Anti-Microbial Properties. Journal of Nanoscience and<br>Nanotechnology, 2015, 15, 2148-2156. | 0.9  | 67        |
| 8  | The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders.<br>Optical Materials, 2009, 31, 995-999.                                                                                          | 1.7  | 59        |
| 9  | Amorphous lead titanate: a new wide-band gap semiconductor with photoluminescence at room temperature. Advanced Materials for Optics and Electronics, 2000, 10, 235-240.                                                         | 0.6  | 58        |
| 10 | Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti,Zr)O3 thin films. Acta Materialia, 2007, 55, 6416-6426.                                                                           | 3.8  | 57        |
| 11 | Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions. Applied Surface Science, 2018, 433, 879-886.                                                                                                    | 3.1  | 51        |
| 12 | Structural evolution of Eu-doped hydroxyapatite nanorods monitored by photoluminescence emission. Journal of Alloys and Compounds, 2012, 531, 50-54.                                                                             | 2.8  | 50        |
| 13 | Synthesis of (Ca,Nd)TiO3 powders by complex polymerization, Rietveld refinement and optical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1050-1059.                              | 2.0  | 48        |
| 14 | Correlation among Orderâ^'Disorder, Electronic Levels, and Photoluminescence in Amorphous CT:Sm.<br>Chemistry of Materials, 2006, 18, 2904-2911.                                                                                 | 3.2  | 47        |
| 15 | Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Advances, 2015, 5, 73875-73881.                                                   | 1.7  | 44        |
| 16 | Synthesis of PbTiO3 by use of polymeric precursors. Materials Letters, 1998, 37, 1-5.                                                                                                                                            | 1.3  | 43        |
| 17 | The role of structural order–disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films. Chemical Physics, 2005, 316, 260-266.                                                                              | 0.9  | 38        |
|    | Correlation Potuson Dhotoluminoscopeo and Structural Defects in                                                                                                                                                                  |      |           |

Correlation Between Photoluminescence and Structural Defects in (scp><scp>Ca</scp></scp><sub>1+<i>x</i></sub><scp><scp>Cu</scp></sub>3<b>a^'</b><i>x</i></sub>4sep><scp>Ti</scp>< Systems. Journal of the American Ceramic Society, 2013, 96, 209-217.

ELAINE C PARIS

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Electrospun poly(lactic acid) nanofibers loaded with silver sulfadiazine/[Mg–Al]″ayered double<br>hydroxide as an antimicrobial wound dressing. Polymers for Advanced Technologies, 2020, 31,<br>1377-1387.                                          | 1.6 | 37        |
| 20 | Photoluminescent behavior of SrBi2Nb2O9 powders explained by means of Î <sup>2</sup> -Bi2O3 phase. Applied Physics<br>Letters, 2007, 90, 261913.                                                                                                     | 1.5 | 34        |
| 21 | The origin of photoluminescence in amorphous lead titanate. Journal of Materials Science, 2003, 38, 1175-1178.                                                                                                                                       | 1.7 | 33        |
| 22 | Layer-by-layer fabrication of AgCl–PANI hybrid nanocomposite films for electronic tongues. Physical<br>Chemistry Chemical Physics, 2014, 16, 24275-24281.                                                                                            | 1.3 | 33        |
| 23 | Investigation on the structural properties in Er-doped PbTiO3 compounds: A correlation between experimental and theoretical results. Journal of Alloys and Compounds, 2008, 462, 157-163.                                                            | 2.8 | 32        |
| 24 | Nanoimmobilization of β-glucosidase onto hydroxyapatite. International Journal of Biological<br>Macromolecules, 2018, 119, 1042-1051.                                                                                                                | 3.6 | 32        |
| 25 | Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+<br>ions adsorption. Chinese Journal of Chemical Engineering, 2020, 28, 1884-1890.                                                              | 1.7 | 31        |
| 26 | Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of<br>α-Fe <sub>2</sub> O <sub>3</sub> Nanoparticles. ACS Omega, 2019, 4, 17477-17486.                                                                              | 1.6 | 29        |
| 27 | Er3+ as marker for order–disorder determination in the PbTiO3 system. Chemical Physics, 2007, 335,<br>7-14.                                                                                                                                          | 0.9 | 28        |
| 28 | Prozac® photodegradation mediated by Mn-doped TiO2 nanoparticles: Evaluation of by-products and mechanisms proposal. Journal of Environmental Chemical Engineering, 2020, 8, 104543.                                                                 | 3.3 | 28        |
| 29 | Photoluminescence in disordered Sm-doped PbTiO3: Experimental and theoretical approach. Journal of Applied Physics, 2006, 100, 034917.                                                                                                               | 1.1 | 26        |
| 30 | Fabrication of zinc oxide nanowires/polymer composites by twoâ€photon polymerization. Journal of<br>Polymer Science, Part B: Polymer Physics, 2014, 52, 333-337.                                                                                     | 2.4 | 26        |
| 31 | Thermal analysis applied in the crystallization study of SrSnO3. Journal of Thermal Analysis and<br>Calorimetry, 2009, 97, 179-183.                                                                                                                  | 2.0 | 25        |
| 32 | Photocatalytic degradation of Prozac® mediated by TiO2 nanoparticles obtained via three synthesis<br>methods: sonochemical, microwave hydrothermal, and polymeric precursor. Environmental Science<br>and Pollution Research, 2020, 27, 27032-27047. | 2.7 | 23        |
| 33 | Production of heterostructured TiO2/WO3 Nanoparticulated photocatalysts through a simple one pot method. Ceramics International, 2015, 41, 3502-3510.                                                                                                | 2.3 | 22        |
| 34 | Hydroxyapatite-CoFe <sub>2</sub> O <sub>4</sub> Magnetic Nanoparticle Composites for Industrial<br>Enzyme Immobilization, Use, and Recovery. ACS Applied Nano Materials, 2020, 3, 12334-12345.                                                       | 2.4 | 22        |
| 35 | Potential of Nb2O5 nanofibers in photocatalytic degradation of organic pollutants. Environmental Science and Pollution Research, 2021, 28, 69401-69415.                                                                                              | 2.7 | 22        |
| 36 | Direct Amorphousâ€ŧoâ€Cubic Perovskite Phase Transformation for Lead Titanate. Journal of the American<br>Ceramic Society, 2000, 83, 1539-1541.                                                                                                      | 1.9 | 20        |

ELAINE C PARIS

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. PLoS ONE, 2020, 15, e0239868.                                                                                                               | 1.1 | 20        |
| 38 | BaZrO <sub>3</sub> photoluminescence property: An ab initio analysis of structural deformation and symmetry changes. International Journal of Quantum Chemistry, 2011, 111, 694-701.                                                                      | 1.0 | 19        |
| 39 | Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template. Journal of Luminescence, 2012, 132, 46-50.                                                                                                | 1.5 | 19        |
| 40 | Photolumiscent Properties of Nanorods and Nanoplates Y2O3:Eu3+. Journal of Fluorescence, 2011, 21, 1431-1438.                                                                                                                                             | 1.3 | 18        |
| 41 | Investigation of nanotoxicological effects of nanostructured hydroxyapatite to microalgae<br>Pseudokirchneriella subcapitata. Ecotoxicology and Environmental Safety, 2017, 144, 138-147.                                                                 | 2.9 | 18        |
| 42 | Structural deformation monitored by vibrational properties and orbital modeling in (Pb,Sm)TiO3 systems. Journal of Physics and Chemistry of Solids, 2010, 71, 12-17.                                                                                      | 1.9 | 17        |
| 43 | Nb2O5 nanoparticles decorated with magnetic ferrites for wastewater photocatalytic remediation.<br>Environmental Science and Pollution Research, 2021, 28, 23731-23741.                                                                                   | 2.7 | 17        |
| 44 | CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support: photocatalysis,<br>cytotoxicity, and antimicrobial response. Environmental Science and Pollution Research, 2022, 29,<br>41505-41519.                                              | 2.7 | 17        |
| 45 | NIOBIUM OXIDES: AN OVERVIEW OF THE SYNTHESIS OF Nb <sub>2</sub> O <sub>5</sub> AND ITS APPLICATION IN HETEROGENEOUS PHOTOCATALYSIS. Quimica Nova, 2014, , .                                                                                               | 0.3 | 16        |
| 46 | Immobilization of phytase on zeolite modified with iron(II) for use in the animal feed and food industry sectors. Process Biochemistry, 2021, 100, 260-271.                                                                                               | 1.8 | 16        |
| 47 | PANI Conductivity: A Dependence of the Chemical Synthesis Temperature. Macromolecular Symposia, 2012, 319, 48-53.                                                                                                                                         | 0.4 | 15        |
| 48 | Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from<br>aqueous media. Journal of Applied Polymer Science, 2020, 137, 48561.                                                                            | 1.3 | 15        |
| 49 | Hydrothermal synthesis and photocatalytic properties of anatase TiO2 nanocrystals obtained from peroxytitanium complex precursor. Materials Science in Semiconductor Processing, 2014, 25, 320-329.                                                       | 1.9 | 14        |
| 50 | Prozac® removal promoted by HAP:Nb2O5 nanoparticles system: byâ€products, mechanism, and cytotoxicity assessment. Journal of Environmental Chemical Engineering, 2021, 9, 104820.                                                                         | 3.3 | 14        |
| 51 | The Effect of ZnO Nanoparticles Morphology on the Toxicity Towards Microalgae<br><i>Pseudokirchneriella subcapitata</i> . Journal of Nanoscience and Nanotechnology, 2020, 20, 48-63.                                                                     | 0.9 | 13        |
| 52 | Evaluation of the catalytic activity of oxide nanoparticles synthesized by the polymeric precursor method on biodiesel production. Journal of Materials Research, 2012, 27, 3020-3026.                                                                    | 1.2 | 12        |
| 53 | Morphological and Structural changes of<br>Ca <sub><i>x</i></sub> Sr <sub>1â"<i>x</i></sub> TiO <sub>3</sub> Powders Obtained by the<br>Microwaveâ€Assisted Hydrothermal Method. International Journal of Applied Ceramic Technology, 2012,<br>9, 186,192 | 1.1 | 12        |
| 54 | Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release. Journal of Polymers and the Environment, 2019, 27, 794-802.                                                                              | 2.4 | 12        |

ELAINE C PARIS

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Topotatic-Like Phase Transformation of Amorphous Lead Titanate to Cubic Lead Titanate. Journal of the<br>American Ceramic Society, 2002, 85, 2166-2170.                                                             | 1.9 | 11        |
| 56 | Formation of β-nickel hydroxide plate-like structures under mild conditions and their optical properties. Journal of Solid State Chemistry, 2011, 184, 2818-2823.                                                   | 1.4 | 11        |
| 57 | Zinc oxide pieces obtained by pressing and slip casting: physical, structural and photocatalytic properties. Environmental Technology (United Kingdom), 2021, 42, 1861-1873.                                        | 1.2 | 11        |
| 58 | Structural Order–Disorder Transformations Monitored by X-ray Diffraction and Photoluminescence.<br>Journal of Chemical Education, 2007, 84, 814.                                                                    | 1.1 | 10        |
| 59 | Insight into magnetite nanoparticle phase evolution in solvothermal synthesis through a simple method based on iron chloride and metallic iron. RSC Advances, 2014, 4, 53265-53272.                                 | 1.7 | 9         |
| 60 | Preparation and Application of Nb2O5 Nanofibers in CO2 Photoconversion. Nanomaterials, 2021, 11, 3268.                                                                                                              | 1.9 | 9         |
| 61 | Solvent effect on the optimization of 1.54Âμm emission in Er-doped Y2O3–Al2O3–SiO2 powders synthesized by a modified Pechini method. Current Applied Physics, 2013, 13, 1558-1565.                                  | 1.1 | 7         |
| 62 | Jahn–Teller effect on the structure of the Sm-doped PbTiO3: A theoretical approach. Computational and Theoretical Chemistry, 2007, 813, 33-37.                                                                      | 1.5 | 6         |
| 63 | Photoactivity of TiO2 nanoparticles covered with nitro group in Fluoxetine and Rhodamine-B degradation. , 0, 205, 252-263.                                                                                          |     | 6         |
| 64 | Obtención de muestras de óxidos a bajo costo. Revista UIS IngenierÃas, 2019, 18, 33-37.                                                                                                                             | 0.1 | 5         |
| 65 | Recent Advances in the Application of Nanotechnology to Reduce Fruit and Vegetable Losses During<br>Post-Harvest. Brazilian Journal of Physics, 2022, 52, .                                                         | 0.7 | 5         |
| 66 | Influence of pH on the incorporation and growth of Pb2CrO5 crystallites in silica matrix. Journal of<br>Sol-Gel Science and Technology, 2011, 59, 488-494.                                                          | 1.1 | 4         |
| 67 | Structural evolution, optical properties, and photocatalytic performance of copper and tungsten heterostructure materials. Materials Today Communications, 2021, 26, 101886.                                        | 0.9 | 4         |
| 68 | Influence of the synthesis method on CuWO4 nanoparticles for photocatalytic application. Journal of<br>Materials Science: Materials in Electronics, 2021, 32, 1139-1149.                                            | 1,1 | 4         |
| 69 | ZnO semiconductors obtained by slip casting: Application and reuse in photocatalysis. International<br>Journal of Applied Ceramic Technology, 2021, 18, 622-630.                                                    | 1.1 | 4         |
| 70 | Influence of terbium (III) ions on the photocatalytic activity of TiO2 and CeO2 for the degradation of methylene blue in industrial effluents. Environmental Science and Pollution Research, 2021, 28, 27147-27161. | 2.7 | 4         |
| 71 | Thermal and structural characterization of SrTi1-xNdxO3. Journal of Thermal Analysis and Calorimetry, 2009, 97, 559-564.                                                                                            | 2.0 | 3         |
| 72 | Pure and Gd doped LAMOX powders and thin films obtained by chemical route. Materials Science and Technology, 2009, 25, 1346-1350.                                                                                   | 0.8 | 3         |

| #  | Article                                                                                                                                                                                                                                                                                            | IF                                        | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|
| 73 | Reply to "Comment on â€~ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mtext>Pb</mml:mtext></mml:mrow><mml:mrow< td=""><td>v&gt; <mml:m< td=""><td>n&gt;1</td></mml:m<></td></mml:mrow<></mml:msub></mml:mrow></mml:math> | v> <mml:m< td=""><td>n&gt;1</td></mml:m<> | n>1       |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |
|    |                                                                                                                                                                                                                                                                                                    |                                           |           |