Doug K Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724860/publications.pdf

Version: 2024-02-01

46 papers

2,581 citations

236925 25 h-index 233421 45 g-index

52 all docs 52 docs citations

52 times ranked 3204 citing authors

#	Article	IF	CITATIONS
1	Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metabolic Engineering, 2022, 69, 231-248.	7.0	27
2	An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. Journal of Experimental Botany, 2022, 73, 2938-2952.	4.8	12
3	Suppression of SDP1 Improves Soybean Seed Composition by Increasing Oil and Reducing Undigestible Oligosaccharides. Frontiers in Plant Science, 2022, 13, 863254.	3.6	13
4	Comparative Metabolic Analysis Reveals a Metabolic Switch in Mature, Hydrated, and Germinated Pollen in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13, .	3.6	10
5	Quantification of Acyl-Acyl Carrier Proteins for Fatty Acid Synthesis Using LC-MS/MS. Methods in Molecular Biology, 2021, 2295, 219-247.	0.9	5
6	Temporal changes in metabolism late in seed development affect biomass composition. Plant Physiology, 2021, 186, 874-890.	4.8	25
7	Analyzing Mass Spectrometry Imaging Data of 13C-Labeled Phospholipids in Camelina sativa and Thlaspi arvense (Pennycress) Embryos. Metabolites, 2021, 11, 148.	2.9	14
8	On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants. Metabolites, 2020, 10, 18.	2.9	25
9	Tracing metabolic flux through time and space with isotope labeling experiments. Current Opinion in Biotechnology, 2020, 64, 92-100.	6.6	47
10	Sterile Spikelets Contribute to Yield in Sorghum and Related Grasses. Plant Cell, 2020, 32, 3500-3518.	6.6	19
11	Reorganization of Acyl Flux through the Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves. Plant Physiology, 2020, 182, 739-755.	4.8	20
12	Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics During Yarrowia lipolytica α-lonone Fermentation. IScience, 2020, 23, 100854.	4.1	25
13	A General Method for Quantification and Discovery of Acyl Groups Attached to Acyl Carrier Proteins in Fatty Acid Metabolism Using LC-MS/MS. Plant Cell, 2020, 32, 820-832.	6.6	15
14	Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods, 2019, 15, 46.	4.3	67
15	The Interaction of the Soybean Seed High Oleic Acid Oil Trait With Other Fatty Acid Modifications. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 39-49.	1.9	22
16	Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically nonâ€stationary ¹³ C metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114, 2298-2308.	3.3	66
17	Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Plant Physiology, 2017, 174, 110-123.	4.8	52
18	Isotopically Nonstationary Metabolic Flux Analysis (INST-MFA) of Photosynthesis and Photorespiration in Plants. Methods in Molecular Biology, 2017, 1653, 167-194.	0.9	21

#	Article	IF	CITATIONS
19	Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform. Frontiers in Plant Science, 2017, 8, 786.	3.6	102
20	Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnology for Biofuels, 2017, 10, 273.	6.2	92
21	Interactions of C ₄ Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of <i>DCT2</i> Mutants. Plant Cell, 2016, 28, 466-484.	6.6	39
22	Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. Journal of Experimental Botany, 2016, 67, 3015-3026.	4.8	98
23	Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas. Plant Cell, 2016, 28, 2026-2042.	6.6	85
24	Assessing compartmentalized flux in lipid metabolism with isotopes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1226-1242.	2.4	30
25	Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. Current Opinion in Biotechnology, 2016, 37, 45-52.	6.6	42
26	Transcriptional response to petiole heat girdling in cassava. Scientific Reports, 2015, 5, 8414.	3.3	19
27	Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Progress in Lipid Research, 2015, 58, 97-120.	11.6	88
28	Metabolic flux analysis using 13 C peptide label measurements. Plant Journal, 2014, 77, 476-486.	5.7	25
29	Isotopically nonstationary ¹³ C flux analysis of changes in <i>Arabidopsis thaliana</i> leaf metabolism due to high light acclimation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16967-16972.	7.1	189
30	Cytosolic Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenases Affect <i>Arabidopsis</i> Cellular Metabolism and Promote Seed Oil Accumulation. Plant Cell, 2014, 26, 3023-3035.	6.6	80
31	Quantification of Peptide <i>m</i> / <i>z</i> Distributions from ¹³ C-Labeled Cultures with High-Resolution Mass Spectrometry. Analytical Chemistry, 2014, 86, 1894-1901.	6.5	16
32	Isotopically Nonstationary MFA (INST-MFA) of Autotrophic Metabolism. Methods in Molecular Biology, 2014, 1090, 181-210.	0.9	29
33	Analysis of Isotopic Labeling in Peptide Fragments by Tandem Mass Spectrometry. PLoS ONE, 2014, 9, e91537.	2.5	17
34	Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos Â. Plant Physiology, 2013, 161, 1458-1475.	4.8	87
35	Rapid Kinetic Labeling of Arabidopsis Cell Suspension Cultures: Implications for Models of Lipid Export from Plastids Â. Plant Physiology, 2012, 158, 601-611.	4.8	71
36	Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant, Cell and Environment, 2012, 35, 1232-1244.	5.7	41

#	Article	IF	CITATION
37	A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Systems Biology, 2011, 5, 8.	3.0	128
38	Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli. Metabolic Engineering, 2011, 13, 38-48.	7.0	143
39	Driving on Biomass. Science, 2009, 324, 1019-1020.	12.6	145
40	Metabolic flux analysis in plants: coping with complexity. Plant, Cell and Environment, 2009, 32, 1241-1257.	5.7	131
41	The role of light in soybean seed filling metabolism. Plant Journal, 2009, 58, 220-234.	5.7	198
42	Quantification of Isotope Label. , 2009, , 105-149.		13
43	Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry, 2007, 68, 2197-2210.	2.9	98
44	Kinetic characterization of enhanced lipase activity on oil bodies. Bioprocess and Biosystems Engineering, 2007, 30, 271-279.	3.4	4
45	Synthesis and characterization of maltose fatty acid monoesters as biosurfactants. Journal of Surfactants and Detergents, 2002, 5, 245-255.	2.1	15
46	Carbohydrate-alkyl ester derivatives as biosurfactants. Journal of Surfactants and Detergents, 1999, 2, 383-390.	2.1	64