Yizhao Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724647/publications.pdf

Version: 2024-02-01

	394286	414303
1,218	19	32
citations	h-index	g-index
50	5 0	1016
58	58	1916
docs citations	times ranked	citing authors
	citations 58	1,218 19 citations h-index 58 58

#	Article	IF	Citations
1	Gross motor function prediction using natural language processing in cerebral palsy. Developmental Medicine and Child Neurology, 2023, 65, 100-106.	1.1	2
2	User-Centered Evaluation of a Visual Annotation Tool for Rapid Assessment of Pediatric Weight Entry Errors. Studies in Health Technology and Informatics, 2022, , .	0.2	O
3	Seasonality, mediation and comparison (SMAC) methods to identify influences on lung function decline. MethodsX, 2021, 8, 101313.	0.7	1
4	DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Briefings in Bioinformatics, 2021, 22, .	3.2	48
5	Seasonal variation of lung function in cystic fibrosis: Longitudinal modeling to compare a Midwest US cohort to international populations. Science of the Total Environment, 2021, 776, 145905.	3.9	2
6	Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies. Npj Digital Medicine, 2021 , 4 , 116 .	5.7	7
7	Automated detection of substance use information from electronic health records for a pediatric population. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2116-2127.	2.2	14
8	Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants. Applied Clinical Informatics, 2021, 12, 856-863.	0.8	4
9	Understanding Pediatric Surgery Cancellation: Geospatial Analysis. Journal of Medical Internet Research, 2021, 23, e26231.	2.1	7
10	External validation and comparison of risk score models in pediatric heart transplants. Pediatric Transplantation, 2021, , e14204.	0.5	0
11	Development and Evaluation of an Automated Approach to Detect Weight Abnormalities in Pediatric Weight Charts AMIA Annual Symposium proceedings, 2021, 2021, 783-792.	0.2	0
12	Influences of environmental exposures on individuals living with cystic fibrosis. Expert Review of Respiratory Medicine, 2020, 14, 737-748.	1.0	19
13	Finding warning markers: Leveraging natural language processing and machine learning technologies to detect risk of school violence. International Journal of Medical Informatics, 2020, 139, 104137.	1.6	22
14	Integrating and Evaluating the Data Quality and Utility of Smart Pump Information in Detecting Medication Administration Errors: Evaluation Study. JMIR Medical Informatics, 2020, 8, e19774.	1.3	6
15	The Generalizability of a Medication Administration Discrepancy Detection System: Quantitative Comparative Analysis. JMIR Medical Informatics, 2020, 8, e22031.	1.3	2
16	Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children's surgery. International Journal of Medical Informatics, 2019, 129, 234-241.	1.6	21
17	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	2.6	99
18	Data Challenges With Real-Time Safety Event Detection And Clinical Decision Support. Journal of Medical Internet Research, 2019, 21, e13047.	2.1	12

#	Article	IF	CITATIONS
19	A Real-Time Automated Patient Screening System for Clinical Trials Eligibility in an Emergency Department: Design and Evaluation. JMIR Medical Informatics, 2019, 7, e14185.	1.3	37
20	Development and Preliminary Evaluation of a Visual Annotation Tool to Rapidly Collect Expert-Annotated Weight Errors in Pediatric Growth Charts. Studies in Health Technology and Informatics, 2019, 264, 853-857.	0.2	3
21	Automated Risk Assessment for School Violence: a Pilot Study. Psychiatric Quarterly, 2018, 89, 817-828.	1.1	5
22	A Time-and-Motion Study of Clinical Trial Eligibility Screening in a Pediatric Emergency Department. Pediatric Emergency Care, 2018, Publish Ahead of Print, 868-873.	0.5	4
23	Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 555-563.	2.2	24
24	Towards phenotyping stroke: Leveraging data from a large-scale epidemiological study to detect stroke diagnosis. PLoS ONE, 2018, 13, e0192586.	1.1	24
25	A Comparison of Existing Methods to Detect Weight Data Errors in a Pediatric Academic Medical Center. AMIA Annual Symposium proceedings, 2018, 2018, 1103-1109.	0.2	3
26	Using Health Information Technology to Improve Safety in Neonatal Care. Clinics in Perinatology, 2017, 44, 583-616.	0.8	11
27	A Pilot Study on Developing a Standardized and Sensitive School Violence Risk Assessment with Manual Annotation. Psychiatric Quarterly, 2017, 88, 447-457.	1.1	3
28	Leveraging Food and Drug Administration Adverse Event Reports for the Automated Monitoring of Electronic Health Records in a Pediatric Hospital. Biomedical Informatics Insights, 2017, 9, 117822261771301.	4.6	13
29	Developing an Algorithm to Detect Early Childhood Obesity in Two Tertiary Pediatric Medical Centers. Applied Clinical Informatics, 2016, 07, 693-706.	0.8	39
30	Natural Language Processing – Overview and History. Translational Bioinformatics, 2016, , 203-230.	0.0	2
31	Will they participate? Predicting patients' response to clinical trial invitations in a pediatric emergency department. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 671-680.	2.2	21
32	Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder. PLoS ONE, 2016, 11, e0159621.	1.1	59
33	Natural Language Processing: Applications in Pediatric Research. Translational Bioinformatics, 2016, , 231-250.	0.0	3
34	Increasing the efficiency of trial-patient matching: automated clinical trial eligibility Pre-screening for pediatric oncology patients. BMC Medical Informatics and Decision Making, 2015, 15, 28.	1.5	82
35	An end-to-end hybrid algorithm for automated medication discrepancy detection. BMC Medical Informatics and Decision Making, 2015, 15, 37.	1.5	33
36	Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 166-178.	2.2	83

#	Article	IF	CITATIONS
37	Automated detection of medication administration errors in neonatal intensive care. Journal of Biomedical Informatics, 2015, 57, 124-133.	2.5	27
38	Desiderata for computable representations of electronic health records-driven phenotype algorithms. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1220-1230.	2.2	110
39	The Effect of Inversion at 8p23 on BLK Association with Lupus in Caucasian Population. PLoS ONE, 2014, 9, e115614.	1.1	23
40	Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 776-784.	2.2	48
41	Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children. Resuscitation, 2014, 85, 1065-1071.	1.3	72
42	Automatic Chord Estimation from Audio: A Review of the State of the Art. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22, 556-575.	4.0	47
43	Preparing an annotated gold standard corpus to share with extramural investigators for de-identification research. Journal of Biomedical Informatics, 2014, 50, 173-183.	2.5	29
44	Understanding Effects of Subjectivity in Measuring Chord Estimation Accuracy. IEEE Transactions on Audio Speech and Language Processing, 2013, 21, 2607-2615.	3.8	25
45	An End-to-End Machine Learning System for Harmonic Analysis of Music. IEEE Transactions on Audio Speech and Language Processing, 2012, 20, 1771-1783.	3.8	35
46	Using Online Chord Databases to Enhance Chord Recognition. Journal of New Music Research, 2011, 40, 139-152.	0.6	5
47	Kernel regression for fMRI pattern prediction. Neurolmage, 2011, 56, 662-673.	2.1	69
48	The application of structured learning in natural language processing. Machine Translation, 2010, 24, 71-85.	1.3	2
49	Exploiting Long-Range Dependencies in Protein \hat{l}^2 -Sheet Secondary Structure Prediction. Lecture Notes in Computer Science, 2010, , 349-357.	1.0	2
50	Structure learning for natural language processing. , 2009, , .		1
51	Kernel methods for fMRI pattern prediction. , 2008, , .		2