Maria Fernanda Neira D'Angelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724576/publications.pdf Version: 2024-02-01

Maria Fernanda Neira

#	Article	IF	CITATIONS
1	Recent Advances and Challenges of Deep Eutectic Solvent based Supported Liquid Membranes. Separation and Purification Reviews, 2022, 51, 226-244.	2.8	4
2	Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: The role of CO2 and CO hydrogenation. Chemical Engineering Journal, 2022, 435, 134946.	6.6	30
3	Boosting the valorization of biomass and green electrons to chemical building blocks: A study on the kinetics and mass transfer during the electrochemical conversion of HMF to FDCA in a microreactor. Chemical Engineering Journal, 2022, 438, 135393.	6.6	15
4	A Divergent Paired Electrochemical Process for the Conversion of Furfural Using a Divided ell Flow Microreactor. ChemSusChem, 2021, 14, 590-594.	3.6	24
5	Controlling the selectivity in the Fischer-Tropsch synthesis using foam catalysts: An integrated experimental and modeling approach. Chemical Engineering Journal, 2021, 409, 128139.	6.6	10
6	Sulfonated foam catalysts for the continuous dehydration of xylose to furfural in biphasic media. Catalysis Today, 2021, 365, 274-281.	2.2	10
7	Rational Design of Bioinspired Nanocomposites with Tunable Catalytic Activity. Crystal Growth and Design, 2021, 21, 4299-4304.	1.4	9
8	Direct conversion of CO2 to dimethyl ether in a fixed bed membrane reactor: Influence of membrane properties and process conditions. Fuel, 2021, 302, 121080.	3.4	29
9	Kinetic Model of Xylose Dehydration for a Wide Range of Sulfuric Acid Concentrations. Industrial & Engineering Chemistry Research, 2020, 59, 11991-12003.	1.8	18
10	Open-cell foams as catalysts support: A systematic analysis of the mass transfer limitations. Chemical Engineering Journal, 2020, 393, 124656.	6.6	24
11	Polyurethane as Novel Catalyst for the Propoxylation of Fatty Amines. ChemCatChem, 2020, 12, 2947-2950.	1.8	Ο
12	Towards coupling direct activation of methane with <i>in situ</i> generation of H ₂ O ₂ . Catalysis Science and Technology, 2019, 9, 5142-5149.	2.1	11
13	From qualitative to quantitative understanding of support effects on the selectivity in silver catalyzed ethylene epoxidation. Catalysis Today, 2019, 338, 31-39.	2.2	22
14	Furfural Production by Reactive Stripping: Process Optimization by a Combined Modeling and Experimental Approach. Industrial & Engineering Chemistry Research, 2019, 58, 16126-16137.	1.8	9
15	Furfural Production by Continuous Reactive Extraction in a Millireactor under the Taylor Flow Regime. Industrial & Engineering Chemistry Research, 2019, 58, 16106-16115.	1.8	12
16	Sequential and in Situ Extraction of Furfural from Reaction Mixture and Effect of Extracting Agents on Furfural Degradation. Industrial & Engineering Chemistry Research, 2019, 58, 16116-16125.	1.8	10
17	Direct synthesis of H2O2 in AuPd coated micro channels: An in-situ X-Ray absorption spectroscopic study. Journal of Catalysis, 2019, 370, 200-209.	3.1	34
18	Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D ₃ . Organic Process Research and Development, 2018, 22, 178-189.	1.3	12

Maria Fernanda Neira

#	Article	IF	CITATIONS
19	Direct epoxidation of propene on silylated Au–Ti catalysts: a study on silylation procedures and the effect on propane formation. Catalysis Science and Technology, 2018, 8, 3052-3059.	2.1	17
20	Epoxidation of propene using Au/TiO2: on the difference between H2 and CO as a co-reactant. Catalysis Science and Technology, 2017, 7, 2252-2261.	2.1	16
21	Facile Synthesis of Catalytic AuPd Nanoparticles within Capillary Microreactors Using Polyelectrolyte Multilayers for the Direct Synthesis of H ₂ O ₂ . Nano Letters, 2017, 17, 6481-6486.	4.5	38
22	Kinetic study of propene oxide and water formation in hydro-epoxidation of propene on Au/Ti–SiO2 catalyst. Journal of Catalysis, 2016, 338, 284-294.	3.1	35
23	Catalyst Coating on Prefabricated Capillary Microchannels for the Direct Synthesis of Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 2015, 54, 2919-2929.	1.8	13
24	Carbon oated Ceramic Membrane Reactor for the Production of Hydrogen by Aqueousâ€Phase Reforming of Sorbitol. ChemSusChem, 2014, 7, 2007-2015.	3.6	24
25	Three-Phase Reactor Model for the Aqueous Phase Reforming of Ethylene Glycol. Industrial & Engineering Chemistry Research, 2014, 53, 13892-13902.	1.8	12
26	Selective Production of Methane from Aqueous Biocarbohydrate Streams over a Mixture of Platinum and Ruthenium Catalysts. ChemSusChem, 2014, 7, 627-630.	3.6	10
27	Aqueous phase reforming in a microchannel reactor: the effect of mass transfer on hydrogen selectivity. Catalysis Science and Technology, 2013, 3, 2834.	2.1	41
28	Hydrogen Production through Aqueousâ€Phase Reforming of Ethylene Glycol in a Washcoated Microchannel. ChemSusChem, 2013, 6, 1708-1716.	3.6	24