
Samuel J Pleasure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724520/publications.pdf Version: 2024-02-01

SAMILEL I DIEASUDE

#	Article	IF	CITATIONS
1	Slit Proteins Prevent Midline Crossing and Determine the Dorsoventral Position of Major Axonal Pathways in the Mammalian Forebrain. Neuron, 2002, 33, 233-248.	8.1	395
2	Retinoic Acid from the Meninges Regulates Cortical Neuron Generation. Cell, 2009, 139, 597-609.	28.9	366
3	Neuropilin-2 Regulates the Development of Select Cranial and Sensory Nerves and Hippocampal Mossy Fiber Projections. Neuron, 2000, 25, 43-56.	8.1	349
4	The chemokine SDF1 regulates migration of dentate granule cells. Development (Cambridge), 2002, 129, 4249-4260.	2.5	348
5	Aberrant seizureâ€induced neurogenesis in experimental temporal lobe epilepsy. Annals of Neurology, 2006, 59, 81-91.	5.3	324
6	Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons. Neuron, 2000, 28, 727-740.	8.1	321
7	Stereotyped Pruning of Long Hippocampal Axon Branches Triggered by Retraction Inducers of the Semaphorin Family. Cell, 2003, 113, 285-299.	28.9	281
8	CXCR4 and CXCR7 Have Distinct Functions in Regulating Interneuron Migration. Neuron, 2011, 69, 61-76.	8.1	249
9	Wnt Signaling Regulates Neuronal Differentiation of Cortical Intermediate Progenitors. Journal of Neuroscience, 2011, 31, 1676-1687.	3.6	230
10	Plexin-A3 Mediates Semaphorin Signaling and Regulates the Development of Hippocampal Axonal Projections. Neuron, 2001, 32, 249-263.	8.1	206
11	Unique Expression Patterns of Cell Fate Molecules Delineate Sequential Stages of Dentate Gyrus Development. Journal of Neuroscience, 2000, 20, 6095-6105.	3.6	205
12	Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E423-31.	7.1	185
13	Wnt Signaling Mutants Have Decreased Dentate Granule Cell Production and Radial Clial Scaffolding Abnormalities. Journal of Neuroscience, 2004, 24, 121-126.	3.6	177
14	Regional Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated by Cxcl12/Cxcr4 Signaling. Journal of Neuroscience, 2008, 28, 1085-1098.	3.6	172
15	Kelch-like Protein 11 Antibodies in Seminoma-Associated Paraneoplastic Encephalitis. New England Journal of Medicine, 2019, 381, 47-54.	27.0	169
16	Wnt signaling in development and disease. Neurobiology of Disease, 2010, 38, 148-153.	4.4	167
17	The Spectrum of Neurologic Disease in the Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic Infection. JAMA Neurology, 2020, 77, 679.	9.0	152
18	The chemokine SDF1 regulates migration of dentate granule cells. Development (Cambridge), 2002, 129, 4249-60.	2.5	148

#	Article	IF	CITATIONS
19	The Ventral Hippocampus Is the Embryonic Origin for Adult Neural Stem Cells in the Dentate Gyrus. Neuron, 2013, 78, 658-672.	8.1	142
20	Morphogenesis of the Dentate Gyrus: What We Are Learning from Mouse Mutants. Developmental Neuroscience, 2005, 27, 93-99.	2.0	140
21	<i>Pax-6</i> Regulates Expression of <i>SFRP-2</i> and <i>Wnt-7b</i> in the Developing CNS. Journal of Neuroscience, 2001, 21, RC132-RC132.	3.6	139
22	NMDA receptors inhibit synapse unsilencing during brain development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5597-5602.	7.1	136
23	Wnt Signaling and Forebrain Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008094-a008094.	5.5	136
24	COUP-TFI Coordinates Cortical Patterning, Neurogenesis, and Laminar Fate and Modulates MAPK/ERK, AKT, and ß-Catenin Signaling. Cerebral Cortex, 2008, 18, 2117-2131.	2.9	123
25	Stromal-Derived Factor-1 (CXCL12) Regulates Laminar Position of Cajal-Retzius Cells in Normal and Dysplastic Brains. Journal of Neuroscience, 2006, 26, 9404-9412.	3.6	121
26	Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Reports Medicine, 2021, 2, 100288.	6.5	121
27	We have got you â€~covered': how the meninges control brain development. Current Opinion in Genetics and Development, 2011, 21, 249-255.	3.3	120
28	Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mechanisms of Development, 2001, 103, 167-172.	1.7	119
29	Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling. Development (Cambridge), 2009, 136, 327-335.	2.5	118
30	Chemical Genetic Identification of NDR1/2 Kinase Substrates AAK1 and Rabin8ÂUncovers Their Roles in Dendrite Arborization and Spine Development. Neuron, 2012, 73, 1127-1142.	8.1	117
31	Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development (Cambridge), 2005, 132, 2917-2927.	2.5	114
32	Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience, 2006, 142, 1119-1131.	2.3	108
33	TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation. Neuron, 2017, 93, 379-393.	8.1	107
34	Cortical dysplasia and skull defects in mice with a <i>Foxc1</i> allele reveal the role of meningeal differentiation in regulating cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14002-14007.	7.1	105
35	PACAP and Its Receptors Exert Pleiotropic Effects in The Nervous System by Activating Multiple Signaling Pathways. Current Protein and Peptide Science, 2002, 3, 423-439.	1.4	100
36	Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21795-21800.	7.1	99

#	Article	IF	CITATIONS
37	Severe Defects in Dorsal Thalamic Development in Low-Density Lipoprotein Receptor-Related Protein-6 Mutants. Journal of Neuroscience, 2004, 24, 7632-7639.	3.6	82
38	A Cascade of Morphogenic Signaling Initiated by the Meninges Controls Corpus Callosum Formation. Neuron, 2012, 73, 698-712.	8.1	80
39	Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nature Communications, 2014, 5, 4692.	12.8	74
40	The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. Journal of Neuroscience, 2018, 38, 5237-5250.	3.6	74
41	Foxc1 is required by pericytes during fetal brain angiogenesis. Biology Open, 2013, 2, 647-659.	1.2	64
42	Expression of SDF-1 and CXCR4 during Reorganization of the Postnatal Dentate Gyrus. Developmental Neuroscience, 2007, 29, 48-58.	2.0	61
43	Wnts Influence the Timing and Efficiency of Oligodendrocyte Precursor Cell Generation in the Telencephalon. Journal of Neuroscience, 2010, 30, 13367-13372.	3.6	55
44	A transgenic marker mouse line labels Cajal–Retzius cells from the cortical hem and thalamocortical axons. Brain Research, 2006, 1077, 48-53.	2.2	54
45	Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild <scp>COVID</scp> â€19. Annals of Clinical and Translational Neurology, 2022, 9, 221-226.	3.7	53
46	Correlation of Clinical and Neuroimaging Findings in a Case of Rabies Encephalitis. Archives of Neurology, 2000, 57, 1765.	4.5	50
47	Migration of Oligodendrocyte Progenitor Cells Is Controlled by Transforming Growth Factor Î ² Family Proteins during Corticogenesis. Journal of Neuroscience, 2014, 34, 14973-14983.	3.6	48
48	Glial cells of the lamprey nervous system contain keratin-like proteins. Journal of Comparative Neurology, 1995, 355, 199-210.	1.6	47
49	Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nature Neuroscience, 2013, 16, 157-165.	14.8	47
50	Bone Morphogenic Protein Signaling Is a Major Determinant of Dentate Development. Journal of Neuroscience, 2013, 33, 6766-6775.	3.6	46
51	A Tale of Two Signals: Wnt and Hedgehog in Dentate Neurogenesis. Science Signaling, 2006, 2006, pe5.	3.6	43
52	Wnt Signaling Regulates Intermediate Precursor Production in the Postnatal Dentate Gyrus by Regulating Cxcr4 Expression. Developmental Neuroscience, 2012, 34, 502-514.	2.0	42
53	Genetic regulation of dentate gyrus morphogenesis. Progress in Brain Research, 2007, 163, 143-808.	1.4	41
54	Suppressor of Fused Is Critical for Maintenance of Neuronal Progenitor Identity during Corticogenesis. Cell Reports, 2015, 12, 2021-2034.	6.4	39

#	Article	IF	CITATIONS
55	Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF—A pathways downstream of retinoic acid from the meninges. Developmental Biology, 2016, 420, 148-165.	2.0	38
56	Ongoing interplay between the neural network and neurogenesis in the adult hippocampus. Current Opinion in Neurobiology, 2010, 20, 126-133.	4.2	36
57	Inducible Genetic Lineage Tracing of Cortical Hem Derived Cajal-Retzius Cells Reveals Novel Properties. PLoS ONE, 2011, 6, e28653.	2.5	35
58	Diverse Functions of Retinoic Acid in Brain Vascular Development. Journal of Neuroscience, 2016, 36, 7786-7801.	3.6	35
59	Anti–SARS-CoV-2 and Autoantibody Profiles in the Cerebrospinal Fluid of 3 Teenaged Patients With COVID-19 and Subacute Neuropsychiatric Symptoms. JAMA Neurology, 2021, 78, 1503.	9.0	34
60	Synaptic memory requires CaMKII. ELife, 2021, 10, .	6.0	33
61	Ttyh1 regulates embryonic neural stem cell properties by enhancing the Notch signaling pathway. EMBO Reports, 2018, 19, .	4.5	31
62	Sonic Hedgehog Signaling Rises to the Surface: Emerging Roles in Neocortical Development. Brain Plasticity, 2018, 3, 119-128.	3.5	31
63	Expression of the BMP antagonist Dan during murine forebrain development. Developmental Brain Research, 2003, 145, 159-162.	1.7	30
64	Embryonic and early postnatal abnormalities contributing to the development of hippocampal malformations in a rodent model of dysplasia. Journal of Comparative Neurology, 2006, 495, 133-148.	1.6	29
65	ATP-binding cassette transporter ABCA2 (ABC2) expression in the developing spinal cord and PNS during myelination. Journal of Comparative Neurology, 2002, 451, 334-345.	1.6	27
66	Heterogeneously Expressed <i>fezf2</i> Patterns Gradient Notch Activity in Balancing the Quiescence, Proliferation, and Differentiation of Adult Neural Stem Cells. Journal of Neuroscience, 2014, 34, 13911-13923.	3.6	27
67	Primary cellular meningeal defects cause neocortical dysplasia and dyslamination. Annals of Neurology, 2010, 68, 454-464.	5.3	26
68	The development of hippocampal cellular assemblies. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 165-177.	5.9	24
69	Human Cytomegalovirus IE2 Protein Disturbs Brain Development by the Dysregulation of Neural Stem Cell Maintenance and the Polarization of Migrating Neurons. Journal of Virology, 2017, 91, .	3.4	23
70	Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. ELife, 2019, 8, .	6.0	23
71	Frizzled9 protein is regionally expressed in the developing medial cortical wall and the cells derived from this region. Developmental Brain Research, 2005, 157, 93-97.	1.7	22
72	Foxg1 Regulates the Postnatal Development of Cortical Interneurons. Cerebral Cortex, 2019, 29, 1547-1560.	2.9	21

#	Article	IF	CITATIONS
73	Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline. PLoS ONE, 2014, 9, e86025.	2.5	20
74	Hilar Mossy Cells Share Developmental Influences with Dentate Granule Neurons. Developmental Neuroscience, 2008, 30, 255-261.	2.0	18
75	Oligogenesis and Oligodendrocyte Progenitor Maturation Vary in Different Brain Regions and Partially Correlate with Local Angiogenesis after Ischemic Stroke. Translational Stroke Research, 2011, 2, 366-375.	4.2	18
76	Characterization of the <i>Frizzled10</i> â€CreERâ,"¢ transgenic mouse: An inducible Cre line for the study of Cajalâ€Retzius cell development. Genesis, 2009, 47, 210-216.	1.6	17
77	The Neocortical Progenitor Specification Program Is Established through Combined Modulation of SHH and FGF Signaling. Journal of Neuroscience, 2020, 40, 6872-6887.	3.6	17
78	<scp>ZSCAN1</scp> Autoantibodies Are Associated with Pediatric Paraneoplastic <scp>ROHHAD</scp> . Annals of Neurology, 2022, 92, 279-291.	5.3	17
79	Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits. Journal of Neuroscience, 2016, 36, 3378-3390.	3.6	16
80	An arrow hits the Wnt signaling pathway. Trends in Neurosciences, 2001, 24, 69-71.	8.6	15
81	Importance and hurdles to drug discovery for neurological disease. Annals of Neurology, 2013, 74, 441-446.	5.3	15
82	Impaired Organization of GABAergic Neurons Following Prenatal Hypoxia. Neuroscience, 2018, 384, 300-313.	2.3	15
83	Meningeal Bmps Regulate Cortical Layer Formation. Brain Plasticity, 2018, 4, 169-183.	3.5	14
84	CoupTFI Interacts with Retinoic Acid Signaling during Cortical Development. PLoS ONE, 2013, 8, e58219.	2.5	14
85	Neural-Derived Extracellular Vesicles in Clinical Trials. JAMA Neurology, 2019, 76, 402.	9.0	13
86	Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets. ELife, 2015, 4, .	6.0	11
87	A Mutation in Mouse Pak1ip1 Causes Orofacial Clefting while Human PAK1IP1 Maps to 6p24 Translocation Breaking Points Associated with Orofacial Clefting. PLoS ONE, 2013, 8, e69333.	2.5	10
88	NMDA receptors control development of somatosensory callosal axonal projections. ELife, 2021, 10, .	6.0	10
89	Ventricular Volume and Transmural Pressure Gradient in Normal Pressure Hydrocephalus. Archives of Neurology, 1999, 56, 1199.	4.5	9
90	Laminar organization of the mouse dentate gyrus: Insights from BETA2/Neuro D mutant mice. Journal of Comparative Neurology, 2004, 477, 81-95.	1.6	8

#	Article	IF	CITATIONS
91	Loss of Suppressor of Fused in Mid-Corticogenesis Leads to the Expansion of Intermediate Progenitors. Journal of Developmental Biology, 2016, 4, 29.	1.7	8
92	FoxG1 Directly Represses Dentate Granule Cell Fate During Forebrain Development. Frontiers in Cellular Neuroscience, 2018, 12, 452.	3.7	8
93	There's No Place Like Home for a Neural Stem Cell. Cell Stem Cell, 2010, 7, 141-143.	11.1	7
94	A Notch above Sonic Hedgehog. Developmental Cell, 2015, 33, 371-372.	7.0	7
95	Suppressor of Fused regulates the proliferation of postnatal neural stem and precursor cells via a Gli3-dependent mechanism. Biology Open, 2019, 8, .	1.2	7
96	The Crossroads of Neural Stem Cell Development and Tumorigenesis. Opera Medica Et Physiologica, 2016, 2, 181-187.	1.0	7
97	TRBP maintains mammalian embryonic neural stem cell properties by enhancing the Notch signaling pathway as a novel transcriptional coactivator. Development (Cambridge), 2017, 144, 778-783.	2.5	5
98	Non-cell autonomous promotion of astrogenesis at late embryonic stages by constitutive YAP activation. Scientific Reports, 2020, 10, 7041.	3.3	4
99	βIV-Spectrin Autoantibodies in 2 Individuals With Neuropathy of Possible Paraneoplastic Origin. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	4
100	Exciting Information for Inhibitory Neurons. Neuron, 2011, 69, 585-587.	8.1	3
101	The Quintessence of Quiescence. Neuron, 2014, 82, 501-503.	8.1	2
102	Focal cerebral Î ² -amyloid angiopathy. Neurology: Clinical Practice, 2017, 7, 444-448.	1.6	2
103	The GAP between Axon Pruning and Repulsion. Developmental Cell, 2012, 23, 3-4.	7.0	0
104	Wrong place, wrong time: ectopic progenitors cause cortical heterotopias. Nature Neuroscience, 2014, 17, 894-895.	14.8	0
105	Meninges and vasculature. , 2020, , 1037-1063.		0
106	ANA Investigates: Pioneering Unbiased Diagnostics. Annals of Neurology, 2020, 87, 327-328.	5.3	0