Nicola Armaroli

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1724485/nicola-armaroli-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 208 15,545 119 h-index g-index citations papers 16,526 6.68 7.1 237 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
208	Photophysical properties of 1,2,3,4,5-pentaarylcyclopentadienyl-hydrotris(indazolyl)borate ruthenium(II) complexes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17049-17056	3.6	
207	Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes. <i>Accounts of Chemical Research</i> , 2021 , 54, 1492-1505	24.3	20
206	Giant Shape-Persistent Tetrahedral Porphyrin System: Light-Induced Charge Separation. <i>Chemistry - A European Journal</i> , 2021 , 27, 16250-16259	4.8	1
205	Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced Excited-State Energy and Blue Emission. <i>Inorganic Chemistry</i> , 2020 , 59, 16238-16250	5.1	4
204	Highly Efficient Luminescent Solar Concentrators Based on Benzoheterodiazole Dyes with Large Stokes Shifts. <i>Chemistry - A European Journal</i> , 2020 , 26, 11013-11023	4.8	6
203	Carbazole-Terpyridine Donor-Acceptor Dyads with Rigid Econjugated Bridges. <i>ChemPlusChem</i> , 2019 , 84, 1353-1365	2.8	7
202	Dinuclear Copper(I) Complexes Combining Bis(diphenylphosphanyl)acetylene with 1,10-Phenanthroline Ligands. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2662-2662	2.3	
201	Dinuclear Copper(I) Complexes Combining Bis(diphenylphosphanyl)acetylene with 1,10-Phenanthroline Ligands. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2665-2673	2.3	5
200	Luminescent methacrylic copolymers with side-chain cyclometalated iridium(III) complexes. <i>Dyes and Pigments</i> , 2019 , 160, 188-197	4.6	6
199	In My Element: Iridium. <i>Chemistry - A European Journal</i> , 2019 , 25, 5104-5104	4.8	1
198	Cyclometalated N-heterocyclic carbene iridium(iii) complexes with naphthalimide chromophores: a novel class of phosphorescent heteroleptic compounds. <i>Dalton Transactions</i> , 2018 , 47, 3440-3451	4.3	17
197	Heteroleptic Copper(I) Pseudorotaxanes Incorporating Macrocyclic Phenanthroline Ligands of Different Sizes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2336-2347	16.4	58
196	Unconventional Synthesis of a Cu Rotaxane with a Superacceptor Stopper: Ultrafast Excited-State Dynamics and Near-Infrared Luminescence. <i>Chemistry - A European Journal</i> , 2018 , 24, 10422-10433	4.8	7
195	Heteroleptic Copper(I) Complexes Prepared from Phenanthroline and Bis-Phosphine Ligands: Rationalization of the Photophysical and Electrochemical Properties. <i>Inorganic Chemistry</i> , 2018 , 57, 15	537 ⁻¹ 15!	549
194	Color-Tunable Heterodinuclear Pt(II)/B(III) and Pt(II)/Ir(III) Arrays with N^O-julolidine Ligands. <i>Inorganic Chemistry</i> , 2017 , 56, 4807-4817	5.1	4
193	Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. <i>Inorganic Chemistry</i> , 2017 , 56, 10584-10595	5.1	30
192	Efficient Photoinduced Energy and Electron Transfer in Zn -Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6 nm and No Wire-like Connectivity. <i>Chemistry - A European Journal</i> , 2017 , 23, 14200-14212	4.8	9

(2014-2017)

191	Photocatalytic Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates. <i>ACS Catalysis</i> , 2017 , 7, 5357-5362	13.1	32	
190	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(iii) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. <i>Chemical Science</i> , 2017 , 8, 1613-1620	9.4	37	
189	Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. <i>ACS Applied Materials & Dopants & Dop</i>	9.5	31	
188	The Rise of Near-Infrared Emitters: Organic Dyes, Porphyrinoids, and Transition Metal Complexes. <i>Topics in Current Chemistry</i> , 2016 , 374, 47	7.2	47	
187	[60]Fullerene-porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 11858-68	3.6	17	
186	Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. <i>Chemistry - A European Journal</i> , 2016 , 22, 32-57	4.8	239	
185	A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes. <i>Inorganic Chemistry</i> , 2016 , 55, 7912-9	5.1	42	
184	Deep-Red Phosphorescent Iridium(III) Complexes with Chromophoric N-Heterocyclic Carbene Ligands: Design, Photophysical Properties, and DFT Calculations. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1631-1634	2.3	21	
183	Nanomaterials for Lighting and Solar Energy Conversion. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2015 , 373-414	0.2		
182	Anilino-Substituted Multicyanobuta-1,3-diene Electron Acceptors: TICT Molecules with Accessible Conical Intersections. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 10677-83	2.8	13	
181	A chelating diisocyanide ligand for cyclometalated Ir(III) complexes with strong and tunable luminescence. <i>Faraday Discussions</i> , 2015 , 185, 233-48	3.6	16	
180	Versatile bisethynyl[60]fulleropyrrolidine scaffolds for mimicking artificial light-harvesting photoreaction centers. <i>Chemistry - A European Journal</i> , 2015 , 21, 1108-17	4.8	8	
179	Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters. <i>Chemistry - A European Journal</i> , 2015 , 21, 15377-87	4.8	35	
178	Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8150-60	16.4	44	
177	Cationic iridium(III) complexes with two carbene-based cyclometalating ligands: cis versus trans isomers. <i>Inorganic Chemistry</i> , 2015 , 54, 3031-42	5.1	34	
176	Panchromatic luminescence from julolidine dyes exhibiting excited state intramolecular proton transfer. <i>Chemical Communications</i> , 2015 , 51, 3351-4	5.8	36	
175	White-light-emitting supramolecular gels. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 365-8	16.4	208	
174	Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer. <i>Chemical Society Reviews</i> , 2014 , 43, 4222-42	58.5	163	

173	Iridium(III) complexes with phenyl-tetrazoles as cyclometalating ligands. <i>Inorganic Chemistry</i> , 2014 , 53, 7709-21	5.1	57
172	Homoleptic Copper(I), Silver(I), and Gold(I) Bisphosphine Complexes. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1345-1355	2.3	61
171	A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous media. <i>Polymer Chemistry</i> , 2014 , 5, 6148-6150	4.9	10
170	Dinuclear Cu(I) complexes prepared from 2-diphenylphosphino-6-methylpyridine. <i>Polyhedron</i> , 2014 , 82, 158-172	2.7	26
169	Cyanobuta-1,3-dienes as novel electron acceptors for photoactive multicomponent systems. <i>Chemistry - A European Journal</i> , 2014 , 20, 202-16	4.8	33
168	Homoleptic and heteroleptic Rull complexes with extended phenanthroline-based ligands. <i>Polyhedron</i> , 2014 , 82, 122-131	2.7	8
167	Weillchtemittierende supramolekulare Gele. Angewandte Chemie, 2014 , 126, 373-376	3.6	45
166	A supramolecular photosynthetic model made of a multiporphyrinic array constructed around a C60 core and a C60-imidazole derivative. <i>Chemistry - A European Journal</i> , 2014 , 20, 223-31	4.8	48
165	Combining Topological and Steric Constraints for the Preparation of Heteroleptic Copper(I) Complexes. <i>Chemistry - A European Journal</i> , 2014 , 20, 11961-11961	4.8	
164	Combining topological and steric constraints for the preparation of heteroleptic copper(I) complexes. <i>Chemistry - A European Journal</i> , 2014 , 20, 12083-90	4.8	16
163	Ultrasound stimulated nucleation and growth of a dye assembly into extended gel nanostructures. <i>Chemistry - A European Journal</i> , 2013 , 19, 12991-3001	4.8	74
162	Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands. <i>Inorganic Chemistry</i> , 2013 , 52, 12140-51	5.1	160
161	Charged bis-cyclometalated iridium(III) complexes with carbene-based ancillary ligands. <i>Inorganic Chemistry</i> , 2013 , 52, 10292-305	5.1	96
160	Ligand-based charge-transfer luminescence in ionic cyclometalated iridium(III) complexes bearing a pyrene-functionalized bipyridine ligand: a joint theoretical and experimental study. <i>Inorganic Chemistry</i> , 2013 , 52, 885-97	5.1	48
159	Azobenzene-based supramolecular polymers for processing MWCNTs. <i>Nanoscale</i> , 2013 , 5, 634-45	7.7	16
158	A stable and strongly luminescent dinuclear Cu(I) helical complex prepared from 2-diphenylphosphino-6-methylpyridine. <i>Chemical Communications</i> , 2013 , 49, 859-61	5.8	26
157	Luminophores and Carbon Nanotubes: An Odd Combination?. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 767-78	6.4	8
156	Carbazole-terpyridine donor\(\text{\textscr}\)cceptor luminophores. \(\textit{RSC Advances}\), \(\text{2013}\), 3, 6507	3.7	17

(2011-2013)

155	New tetrazole-based Cu(I) homo- and heteroleptic complexes with various P^P ligands: synthesis, characterization, redox and photophysical properties. <i>Dalton Transactions</i> , 2013 , 42, 997-1010	4.3	90
154	Extreme Tuning of Redox and Optical Properties of Cationic Cyclometalated Iridium(III) Isocyanide Complexes. <i>Organometallics</i> , 2013 , 32, 460-467	3.8	45
153	2013,		10
152	Bright blue phosphorescence from cationic bis-cyclometalated iridium(III) isocyanide complexes. <i>Inorganic Chemistry</i> , 2012 , 51, 2263-71	5.1	64
151	Blue Phosphorescence of Trifluoromethyl- and Trifluoromethoxy-Substituted Cationic Iridium(III) Isocyanide Complexes. <i>Organometallics</i> , 2012 , 31, 6288-6296	3.8	42
150	Optoelectronic Devices: CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials (Adv. Funct. Mater. 15/2012). <i>Advanced Functional Materials</i> , 2012, 22, 3315-3315	15.6	1
149	Lumineszierende ionische Bergangsmetallkomplexe filleuchtende elektrochemische Zellen. <i>Angewandte Chemie</i> , 2012 , 124, 8300-8334	3.6	80
148	Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8178-211	16.4	767
147	Blue-emitting dinuclear N-heterocyclic dicarbene gold(I) complex featuring a nearly unit quantum yield. <i>Inorganic Chemistry</i> , 2012 , 51, 1778-84	5.1	91
146	Engineering conjugation in para-phenylene-bridged porphyrin tapes. Chemical Science, 2012, 3, 1541	9.4	63
145	Sawhorse-Type Tetracarbonyldiruthenium Tweezers. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 3449-3455	2.3	7
144	CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials. <i>Advanced Functional Materials</i> , 2012 , 22, 3209-3222	15.6	26
143	Luminescent blooming of dendronic carbon nanotubes through ion-pairing interactions with an Eu(III) complex. <i>Chemistry - A European Journal</i> , 2012 , 18, 5889-97	4.8	17
142	Electrostatically-driven assembly of MWCNTs with a europium complex. <i>Chemical Communications</i> , 2011 , 47, 1625-7	5.8	36
141	Photoinduced electron transfer in a clicked fullereneporphyrin conjugate. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1562-1573		45
140	Towards an electricity-powered world. <i>Energy and Environmental Science</i> , 2011 , 4, 3193	35.4	328
139	A supramolecular porphyrinflerroceneflullerene triad. New Journal of Chemistry, 2011, 35, 632	3.6	25
138	Engineering supramolecular photoactive nanomaterials by hydrogen-bonding interactions. <i>Pure and Applied Chemistry</i> , 2011 , 83, 899-912	2.1	6

137	Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15412-24	16.4	74
136	The legacy of fossil fuels. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 768-84	4.5	49
135	The hydrogen issue. <i>ChemSusChem</i> , 2011 , 4, 21-36	8.3	594
134	From molecular to macroscopic engineering: shaping hydrogen-bonded organic nanomaterials. <i>Chemistry - A European Journal</i> , 2011 , 17, 3262-73	4.8	28
133	A luminescent host-guest hybrid between a Eu(III) complex and MWCNTs. <i>Chemistry - A European Journal</i> , 2011 , 17, 8533-7	4.8	21
132	Fullerodendrimers with a perylenediimide core. <i>New Journal of Chemistry</i> , 2011 , 35, 2234	3.6	32
131	On the route to mimic natural movements: synthesis and photophysical properties of a molecular arachnoid. <i>Chemical Communications</i> , 2011 , 47, 451-3	5.8	10
130	Photophysical properties of charged cyclometalated Ir(III) complexes: a joint theoretical and experimental study. <i>Inorganic Chemistry</i> , 2011 , 50, 7229-38	5.1	89
129	Thermosolutal self-organization of supramolecular polymers into nanocraters. <i>Langmuir</i> , 2011 , 27, 151	3 ₇ 23	14
128	Photo-induced Energy Transfer in a Th-Symmetrical Hexakis-adduct of C60 Substituted with EConjugated Oligomers. <i>Australian Journal of Chemistry</i> , 2011 , 64, 153	1.2	14
128		1.2	14 34
	EConjugated Oligomers. Australian Journal of Chemistry, 2011 , 64, 153	3.8	
127	EConjugated Oligomers. Australian Journal of Chemistry, 2011, 64, 153 2010, Taking Advantage of the Electronic Excited States of [60]-Fullerenes. Journal of Physical Chemistry		34
127 126	EConjugated Oligomers. Australian Journal of Chemistry, 2011, 64, 153 2010, Taking Advantage of the Electronic Excited States of [60]-Fullerenes. Journal of Physical Chemistry C, 2010, 114, 1385-1403 The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and		34 82
127 126 125	2010, Taking Advantage of the Electronic Excited States of [60]-Fullerenes. <i>Journal of Physical Chemistry C</i> , 2010, 114, 1385-1403 The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and experimental insight. <i>Computational and Theoretical Chemistry</i> , 2010, 962, 7-14 Synthesis and Photophysical Properties of Copper(I) Complexes Obtained from 1,10-Phenanthroline Ligands with Increasingly Bulky 2,9-Substituents. <i>European Journal of Inorganic</i>	3.8	34 82 16
127 126 125	2010, Taking Advantage of the Electronic Excited States of [60]-Fullerenes. Journal of Physical Chemistry C, 2010, 114, 1385-1403 The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and experimental insight. Computational and Theoretical Chemistry, 2010, 962, 7-14 Synthesis and Photophysical Properties of Copper(I) Complexes Obtained from 1,10-Phenanthroline Ligands with Increasingly Bulky 2,9-Substituents. European Journal of Inorganic Chemistry, 2010, 2010, 164-173 Fullerene derivatives functionalized with diethylamino-substituted conjugated oligomers: synthesis	2.3 4.8	34 82 16 30
127 126 125 124	2010, Taking Advantage of the Electronic Excited States of [60]-Fullerenes. Journal of Physical Chemistry C, 2010, 114, 1385-1403 The electronic properties of a homoleptic bisphosphine Cu(I) complex: A joint theoretical and experimental insight. Computational and Theoretical Chemistry, 2010, 962, 7-14 Synthesis and Photophysical Properties of Copper(I) Complexes Obtained from 1,10-Phenanthroline Ligands with Increasingly Bulky 2,9-Substituents. European Journal of Inorganic Chemistry, 2010, 2010, 164-173 Fullerene derivatives functionalized with diethylamino-substituted conjugated oligomers: synthesis and photoinduced electron transfer. Chemistry - A European Journal, 2009, 15, 8825-33 Synthesis and photoluminescence properties of asymmetrical europium(III) complexes involving	2.3 4.8	34 82 16 30

(2007-2009)

119	Fullerene-rich dendrimers: divergent synthesis and photophysical properties. <i>New Journal of Chemistry</i> , 2009 , 33, 337-344	3.6	21
118	Engineering spherical nanostructures through hydrogen bonds. <i>Chemical Communications</i> , 2009 , 2830-2	2 5.8	38
117	1,10-phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. <i>Chemical Society Reviews</i> , 2009 , 38, 1690-700	58.5	297
116	Tunable photophysical properties of phenyleneethynylene based bipyridine ligands. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 1432-40	4.2	15
115	Photoinduced electron transfer in a fullereneBligophenylenevinylene dyad. <i>New Journal of Chemistry</i> , 2009 , 33, 2174	3.6	13
114	Photoinduced structural modifications in multicomponent architectures containing azobenzene moieties as photoswitchable cores. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4715		46
113	Engineering of supramolecular H-bonded nanopolygons via self-assembly of programmed molecular modules. <i>Journal of the American Chemical Society</i> , 2009 , 131, 509-20	16.4	102
112	Synthesis, photophysical, electrochemical, and electrochemiluminescent properties of 5,15-bis(9-anthracenyl)porphyrin derivatives. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 2402-13	3.9	24
111	Luminescent complexes beyond the platinum group: the d10 avenue. <i>Chemical Communications</i> , 2008 , 2185-93	5.8	529
110	Synthesis and electronic properties of fullerene derivatives substituted with oligophenylenevinylenEerrocene conjugates. <i>New Journal of Chemistry</i> , 2008 , 32, 54-64	3.6	16
109	Heteroleptic copper(I) complexes coupled with methano[60]fullerene: synthesis, electrochemistry, and photophysics. <i>Inorganic Chemistry</i> , 2008 , 47, 6254-61	5.1	53
108	Synthesis and photoluminescence of a dendritic europium complex with carbazole moieties. <i>Journal of Rare Earths</i> , 2008 , 26, 173-177	3.7	11
107	Electronic excited-state engineering. <i>ChemPhysChem</i> , 2008 , 9, 371-3	3.2	38
106	Synthesis and Photoluminescence Properties of Heteroleptic Europium(III) Complexes with Appended Carbazole Units. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2075-2080	2.3	26
105	Dendritic Effects on Structure and Photophysical and Photoelectrochemical Properties of Fullerene Dendrimers and Their Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2777-2786	3.8	48
104	1,10-Phenanthrolines with tunable luminescence upon protonation: a spectroscopic and computational study. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 7707-18	2.8	19
103	Photochemistry and Photophysics of Coordination Compounds: Copper 2007 , 69-115		431
102	The future of energy supply: Challenges and opportunities. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 52-66	16.4	1291

101	Die Zukunft der Energieversorgung [Herausforderungen und Chancen. <i>Angewandte Chemie</i> , 2007 , 119, 52-67	3.6	239
100	Wet Adsorption of a Luminescent EuIII complex on Carbon Nanotubes Sidewalls. <i>Advanced Functional Materials</i> , 2007 , 17, 2975-2982	15.6	69
99	Fullerene Derivatives Substituted with Differently Branched Phenyleneethynylene Dendrons: Synthesis, Electronic and Excited State Properties. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 5899-5908	3.2	13
98	Heteroleptic Cu(I) complexes containing phenanthroline-type and 1,1?-bis(diphenylphosphino)ferrocene ligands: Structure and electronic properties. <i>Inorganica Chimica Acta</i> , 2007 , 360, 1032-1042	2.7	61
97	Synthesis and near-infrared luminescence of a deuterated conjugated porphyrin dimer for probing the mechanism of non-radiative deactivation. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 1056-61	3.9	21
96	Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. <i>Chemical Communications</i> , 2007 , 3077-9	5.8	149
95	Chapter 4:Light-Induced Processes in Fullerene Multicomponent Systems. <i>RSC Nanoscience and Nanotechnology</i> , 2007 , 79-126		3
94	Highly Luminescent CuI Complexes for Light-Emitting Electrochemical Cells. <i>Advanced Materials</i> , 2006 , 18, 1313-1316	24	319
93	Photoinduced energy and electron transfer in fullerene-oligophenyleneethynylene systems: dependence on the substituents of the oligomer unit. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 1165-72	4.2	27
92	Synthesis and excited state properties of a [60]fullerene derivative bearing a star-shaped multi-photon absorption chromophore. <i>Chemical Communications</i> , 2006 , 2054-6	5.8	31
91	Novel phenanthroline ligands and their kinetically locked copper(I) complexes with unexpected photophysical properties. <i>Inorganic Chemistry</i> , 2006 , 45, 2061-7	5.1	114
90	Photoinduced electron and energy transfer processes in fullerene C60hetal complex hybrid assemblies. <i>Comptes Rendus Chimie</i> , 2006 , 9, 1005-1013	2.7	45
89	Synthesis of fullerohelicates and fine tuning of the photoinduced processes by changing the number of addends on the fullerene subunits. <i>Tetrahedron</i> , 2006 , 62, 2060-2073	2.4	19
88	Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15903-	1 ³ 6.4	149
87	Structure-dependent photoinduced electron transfer in fullerodendrimers with light-harvesting oligophenylenevinylene terminals. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 564-74	4.5	33
86	Syntheses and crystal structures of dinuclear complexes containing d-block and f-block luminophores. Sensitization of NIR luminescence from Yb(III), Nd(III), and Er(III) centers by energy transfer from Re(I)- and Pt(II)-bipyrimidine metal centers. <i>Inorganic Chemistry</i> , 2005 , 44, 61-72	5.1	181
85	All-thiophene donor acceptor blends: photophysics, morphology and photoresponse. <i>Journal of Materials Chemistry</i> , 2005 , 15, 895-901		18
84	Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 529-37	5.1	332

(2003-2005)

83	Synthesis and optical properties of isomeric branched pi-conjugated systems. <i>Journal of Organic Chemistry</i> , 2005 , 70, 7550-7	4.2	28
82	Oligoporphyrin Arrays Conjugated to [60]Fullerene: Preparation, NMR Analysis, and Photophysical and Electrochemical Properties. <i>Helvetica Chimica Acta</i> , 2005 , 88, 1839-1884	2	66
81	Photophysical and electrochemical properties of meso, meso-linked oligoporphyrin rods with appended fullerene terminals. <i>ChemPhysChem</i> , 2005 , 6, 732-43	3.2	66
80	Pyrazolino[60]fullerene-oligophenylenevinylene dumbbell-shaped arrays: synthesis, electrochemistry, photophysics, and self-assembly on surfaces. <i>Chemistry - A European Journal</i> , 2005 , 11, 4405-15	4.8	45
79	Polarity effects on the photophysics of dendrimers with an oligophenylenevinylene core and peripheral fullerene units. <i>Chemistry - A European Journal</i> , 2004 , 10, 5076-86	4.8	70
78	Fullerene-containing macromolecules for materials science applications. <i>Carbon</i> , 2004 , 42, 1077-1083	10.4	29
77	Electronic properties of oligophenylenevinylene and oligophenyleneethynylene arrays constructed on the upper rim of a calix[4]arene core. <i>New Journal of Chemistry</i> , 2004 , 28, 1627	3.6	32
76	Fullerohelicates: a new class of fullerene-containing supermolecules. <i>Chemical Communications</i> , 2004 , 1582-3	5.8	30
75	Optical properties and photoinduced processes in multicomponent architectures with oligophenylenevinylene units. <i>Synthetic Metals</i> , 2004 , 147, 19-28	3.6	11
74	Macrocyclic Complexes of [Ru(N-N)2]2+ Units [N-N = 1,10 Phenanthroline or 4-(p-Anisyl)-1,10-Phenanthroline]: Synthesis and Photochemical Expulsion Studies. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 467-474	2.3	26
73	Exceptional Redox and Photophysical Properties of a Triply Fused Diporphyrin © 60 Conjugate: Novel Scaffolds for Multicharge Storage in Molecular Scale Electronics. <i>Angewandte Chemie</i> , 2003 , 115, 5116-5120	3.6	40
72	[60]Fullerene: a versatile photoactive core for dendrimer chemistry. <i>Chemistry - A European Journal</i> , 2003 , 9, 36-41	4.8	84
71	A fullerene core to probe dendritic shielding effects. <i>Tetrahedron</i> , 2003 , 59, 3833-3844	2.4	52
70	Exceptional redox and photophysical properties of a triply fused diporphyrin-C60 conjugate: novel scaffolds for multicharge storage in molecular scale electronics. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4966-70	16.4	114
69	Ground and excited state electronic interactions in a bis(phenanthroline) copper(I) complex sandwiched between two fullerene subunits. <i>Inorganic Chemistry</i> , 2003 , 42, 8783-93	5.1	32
68	From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth. <i>Photochemical and Photobiological Sciences</i> , 2003 , 2, 73-87	4.2	102
67	Copper(I) complexes of 1,10-phenanthrolineBligophenylenevinylene conjugates. <i>New Journal of Chemistry</i> , 2003 , 27, 1470-1478	3.6	15
66	Ultrafast dynamics of Cu(I)-phenanthrolines in dichloromethane. Chemical Communications, 2003, 3010-	1 5.8	33

65	Photophysical properties of the ReI and RuII complexes of a new C60-substituted bipyridine ligand. <i>Chemistry - A European Journal</i> , 2002 , 8, 2314-23	4.8	64
64	Functionalization of [60]fullerene with new light-collecting oligophenylenevinylene-terminated dendritic wedges. <i>Tetrahedron Letters</i> , 2002 , 43, 65-68	2	43
63	Interplay of light antenna and excitation "energy reservoir" effects in a bichromophoric system based on ruthenium-polypyridine and pyrene units linked by a long and flexible poly(ethylene glycol) chain. <i>Inorganic Chemistry</i> , 2002 , 41, 6711-9	5.1	67
62	Highly luminescent Eu(3+) and Tb(3+) macrocyclic complexes bearing an appended phenanthroline chromophore. <i>Inorganic Chemistry</i> , 2002 , 41, 2777-84	5.1	97
61	Fullerodendrimers with peripheral triethyleneglycol chains: synthesis, mass spectrometric characterization, and photophysical properties. <i>New Journal of Chemistry</i> , 2002 , 26, 1146-1154	3.6	57
60	Synthesis, Complexation and Photophysics in Protic Solvents of Lanthanide Complexes of Novel Calix[4]arene Polycarboxylic-2,2?-bipyridine Mixed Ligands. <i>Supramolecular Chemistry</i> , 2002 , 14, 281-289	9 ^{1.8}	16
59	Thin layer cyclic voltammetry: an efficient tool to determine the redox characteristics of large dendrimers. <i>Chemical Communications</i> , 2002 , 2830-1	5.8	17
58	Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moiety. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2077-2087		86
57	Calix[4]oligophenylenevinylene: a new rigid core for the design of Etonjugated liquid crystalline derivatives. <i>Tetrahedron Letters</i> , 2001 , 42, 2309-2312	2	19
56	Molecular photovoltaic devices. <i>Materials Today</i> , 2001 , 4, 16-18	21.8	17
56 55	Molecular photovoltaic devices. <i>Materials Today</i> , 2001 , 4, 16-18 Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9	21.8	17 25
	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising		
55	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9 Photoactive mono- and polynuclear Cu(I)phenanthrolines. A viable alternative to	4.2	25
55 54	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9 Photoactive mono- and polynuclear Cu(I)phenanthrolines. A viable alternative to Ru(II)polypyridines?. <i>Chemical Society Reviews</i> , 2001 , 30, 113-124 Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of	4.2 58.5	25 499
55 54 53	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9 Photoactive mono- and polynuclear Cu(I)phenanthrolines. A viable alternative to Ru(II)polypyridines?. <i>Chemical Society Reviews</i> , 2001 , 30, 113-124 Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties. <i>Journal of the American Chemical Society</i> , 2001 , 123, 6291-9 Folding of a poly(oxyethylene) chain as probed by photoinduced energy transfer between Ruland	4.2 58.5	25 499 175
55 54 53 52	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9 Photoactive mono- and polynuclear Cu(I)Bhenanthrolines. A viable alternative to Ru(II)Bolypyridines?. <i>Chemical Society Reviews</i> , 2001 , 30, 113-124 Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties. <i>Journal of the American Chemical Society</i> , 2001 , 123, 6291-9 Folding of a poly(oxyethylene) chain as probed by photoinduced energy transfer between Ruland OsBolypyridine termini. <i>Dalton Transactions RSC</i> , 2001 , 2228-2231 A fulleropyrrolidine with two oligophenylenevinylene substituents: synthesis, electrochemistry and	4.2 58.5 16.4	25 499 175
5554535251	Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6432-9 Photoactive mono- and polynuclear Cu(I)phenanthrolines. A viable alternative to Ru(II)polypyridines?. <i>Chemical Society Reviews</i> , 2001 , 30, 113-124 Highly luminescent Cu(I)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties. <i>Journal of the American Chemical Society</i> , 2001 , 123, 6291-9 Folding of a poly(oxyethylene) chain as probed by photoinduced energy transfer between Ruland Ospolypyridine termini. <i>Dalton Transactions RSC</i> , 2001 , 2228-2231 A fulleropyrrolidine with two oligophenylenevinylene substituents: synthesis, electrochemistry and photophysical properties. <i>International Journal of Photoenergy</i> , 2001 , 3, 33-40	4.2 58.5 16.4	25 499 175 12 6

(1999-2000)

47	Controlling the energy-transfer direction: an oligophenylenevinylene[phenanthroline dyad acting as a proton triggered molecular switch. <i>Chemical Communications</i> , 2000 , 2105-2106	5.8	23
46	Photoinduced energy transfer within hydrogen-bonded multi-component assemblies based on a rutheniumpolypyridyl donor and an osmiumpolypyridyl or ferrocenyl acceptor. <i>New Journal of Chemistry</i> , 2000 , 24, 987-991	3.6	14
45	Polybenzyl ether dendrimers for the complexation of [60]fullerenes. <i>New Journal of Chemistry</i> , 2000 , 24, 749-758	3.6	56
44	Photoinduced energy transfer in a fullereneBligophenylenevinylene conjugate. <i>Chemical Communications</i> , 2000 , 599-600	5.8	74
43	Charge-transfer interactions in face-to-face porphyrin-fullerene systems: solvent-dependent luminescence in the infrared spectral region. <i>Chemistry - A European Journal</i> , 2000 , 6, 1629-45	4.8	159
42	Complexation of fullerenes with dendritic cyclotriveratrylene derivatives. <i>Tetrahedron Letters</i> , 1999 , 40, 5681-5684	2	56
41	Photoinduced processes in multicomponent arrays containing transition metal complexes. <i>Coordination Chemistry Reviews</i> , 1999 , 190-192, 671-682	23.2	115
40	A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP). <i>New Journal of Chemistry</i> , 1999 , 23, 77-	83 ^{.6}	139
39	Ein Kupfer(I)-Bis(phenanthrolin)-Komplex, der in einer Fulleren-funktionalisierten dendritischen Hlle verborgen ist. <i>Angewandte Chemie</i> , 1999 , 111, 3895-3899	3.6	10
38	A Copper(I) Bis-phenanthroline Complex Buried in Fullerene-Functionalized Dendritic Black Boxes. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 3730-3733	16.4	73
37	Use of photoinduced energy-transfer to probe solvent-dependent conformational changes in a flexible Ru/Os dinuclear complex. <i>Chemical Communications</i> , 1999 , 2089-2090	5.8	9
36	Luminescent molecular wires with 2,5-thiophenediyl spacers linking {Ru(terpy)2} units. <i>Chemical Communications</i> , 1999 , 869-870	5.8	59
35	Lanthanide complexes of a new sterically hindered potentially hexadentate podand ligand based on a tris(pyrazolyl)borate core; crystal structures, solution structures and luminescence properties. <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 349-356		25
34	TripletIIriplet Energy Transfer between Porphyrins Linked via a Ruthenium(II) Bisterpyridine Complex. <i>Inorganic Chemistry</i> , 1999 , 38, 661-667	5.1	75
33	Photoinduced processes in porphyrin-stoppered [3]-rotaxanes. New Journal of Chemistry, 1999, 23, 115	13.16158	3 37
32	Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions. <i>Journal of the American Chemical Society</i> , 1999 , 121, 4397-4408	16.4	294
31	Structural and Photophysical Properties of Mononuclear and Dinuclear Lanthanide(III) Complexes of Multidentate Podand Ligands Based on Poly(pyrazolyl)borates. <i>Inorganic Chemistry</i> , 1999 , 38, 5769-5	577t	64
30	Synthesis, X-ray Structure, and Electrochemical and Excited-State Properties of Multicomponent Complexes Made of a [Ru(Tpy)2]2+ Unit Covalently Linked to a [2]-Catenate Moiety. Controlling the Energy-Transfer Direction by Changing the Catenate Metal Ion. <i>Journal of the American Chemical</i>	16.4	49

29	Assemblies of luminescent ruthenium(II)[and osmium(II)[bolypyridyl complexes based on hydrogen bonding. <i>Coordination Chemistry Reviews</i> , 1998 , 171, 481-488	23.2	49
28	A Copper(I)-Complexed Rotaxane with Two Fullerene Stoppers: Synthesis, Electrochemistry, and Photoinduced Processes. <i>Chemistry - A European Journal</i> , 1998 , 4, 406-416	4.8	128
27	Photoinduced Processes in Highly Coupled Multicomponent Arrays Based on a Ruthenium(II)Bis(terpyridine) Complex and Porphyrins. <i>Chemistry - A European Journal</i> , 1998 , 4, 1744-17	7 5 48	69
26	Spectroscopic, luminescence and electrochemical studies on a pair of isomeric complexes [(bipy)2Ru(AB)PtCl2][PF6]2 and [Cl2Pt(AB)Ru(bipy)2][PF6]2, where AB is the bis-bipyridyl bridging ligand 2,2?:3?,2?:6?,2?-quaterpyridine. <i>New Journal of Chemistry</i> , 1998 , 22, 913-917	3.6	11
25	Electronic energy transfer between ruthenium(II) and osmium(II) polypyridyl luminophores in a hydrogen-bonded supramolecular assembly. <i>Chemical Communications</i> , 1997 , 2181-2182	5.8	29
24	Intercomponent Electronic Energy Transfer in Heteropolynuclear Complexes Containing Ruthenium- and Rhenium-Based Chromophores Bridged by an Asymmetric Quaterpyridine Ligand. <i>Inorganic Chemistry</i> , 1997 , 36, 2601-2609	5.1	27
23	Complexes Containing 2,9-Bis(p-biphenylyl)-1,10-phenanthroline Units Incorporated into a 56-Membered Ring. Synthesis, Electrochemistry, and Photophysical Properties. <i>Inorganic Chemistry</i> , 1997, 36, 5329-5338	5.1	40
22	Protonation of free 2,9-bis(p-biphenylyl)-1,10-phenanthrolinesites in a 56-membered macrocycle and in its Reland Culcomplexes Absorption spectra, luminescence properties, and excited state interactions. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 4145-4150		14
21	A Study on Delocalization of MLCT Excited States by Rigid Bridging Ligands in Homometallic Dinuclear Complexes of Ruthenium(II). <i>Journal of Physical Chemistry A</i> , 1997 , 101, 9061-9069	2.8	132
	Floring the second of the second of the Daisse Disa Matiena is a Disserse shire!		
20	Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. <i>Journal of the American Chemical Society</i> , 1997 , 119, 12114-12124	16.4	213
2 0		16.4 3.4	21377
	[2]-Catenate. <i>Journal of the American Chemical Society</i> , 1997 , 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. <i>Journal of</i>	<u> </u>	
19	[2]-Catenate. Journal of the American Chemical Society, 1997, 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. Journal of Physical Chemistry B, 1997, 101, 5936-5943 Derivatives of luminescent metalpolypyridyl complexes withpendant adenine or thymine groups: building blocks for supramolecular assemblies based on hydrogen bonding. Journal of the Chemical	<u> </u>	77
19 18	[2]-Catenate. Journal of the American Chemical Society, 1997, 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. Journal of Physical Chemistry B, 1997, 101, 5936-5943 Derivatives of luminescent metalpolypyridyl complexes withpendant adenine or thymine groups: building blocks for supramolecularassemblies based on hydrogen bonding. Journal of the Chemical Society Dalton Transactions, 1997, 727-736 Luminescence properties of Eu3+, Tb3+, and Gd3+ complexes of the hexadentate N-donor podand	3.4	77 25 18
19 18 17	[2]-Catenate. Journal of the American Chemical Society, 1997, 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. Journal of Physical Chemistry B, 1997, 101, 5936-5943 Derivatives of luminescent metalpolypyridyl complexes withpendant adenine or thymine groups: building blocks for supramolecularassemblies based on hydrogen bonding. Journal of the Chemical Society Dalton Transactions, 1997, 727-736 Luminescence properties of Eu3+, Tb3+, and Gd3+ complexes of the hexadentate N-donor podand tris-[3-(2-pyridyl) pyrazol-lyl]hydroborate. Chemical Physics Letters, 1997, 276, 435-440 Temperature Independent Ru -jOs Electronic Energy Transfer in a Rodlike Dinuclear Complex with a	2.5	77 25 18
19 18 17 16	[2]-Catenate. Journal of the American Chemical Society, 1997, 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. Journal of Physical Chemistry B, 1997, 101, 5936-5943 Derivatives of luminescent metalpolypyridyl complexes withpendant adenine or thymine groups: building blocks for supramolecularassemblies based on hydrogen bonding. Journal of the Chemical Society Dalton Transactions, 1997, 727-736 Luminescence properties of Eu3+, Tb3+, and Gd3+ complexes of the hexadentate N-donor podand tris-[3-(2-pyridyl) pyrazol-lyl]hydroborate. Chemical Physics Letters, 1997, 276, 435-440 Temperature Independent Ru -jOs Electronic Energy Transfer in a Rodlike Dinuclear Complex with a 2.4 nm Intermetal Separation. Journal of the American Chemical Society, 1996, 118, 11972-11973 Concave Macrobicycles: Absorption Spectra, Luminescence Properties, and Endocavital	2.5	77 25 18 46
19 18 17 16	[2]-Catenate. Journal of the American Chemical Society, 1997, 119, 12114-12124 Photoinduced Processes in Dyads Made of a Porphyrin Unit and a Ruthenium Complex. Journal of Physical Chemistry B, 1997, 101, 5936-5943 Derivatives of luminescent metalfiolypyridyl complexes withpendant adenine or thymine groups: building blocks for supramolecularassemblies based on hydrogen bonding. Journal of the Chemical Society Dalton Transactions, 1997, 727-736 Luminescence properties of Eu3+, Tb3+, and Gd3+ complexes of the hexadentate N-donor podand tris-[3-(2-pyridyl) pyrazol-lyl]hydroborate. Chemical Physics Letters, 1997, 276, 435-440 Temperature Independent Ru -jOs Electronic Energy Transfer in a Rodlike Dinuclear Complex with a 2.4 nm Intermetal Separation. Journal of the American Chemical Society, 1996, 118, 11972-11973 Concave Macrobicycles: Absorption Spectra, Luminescence Properties, and Endocavital Complexation of Neutral Organic Guests. Liebigs Annalen, 1996, 1996, 1697-1704	3.4 2.5 16.4	77 25 18 46 5

LIST OF PUBLICATIONS

11	Supramolecular photochemistry and photophysics. Biacetyl imprisoned in a hemicarcerand. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 12701-12703		40
10	Complexes of the Ruthenium(II)-2,2P:6P;2PPterpyridine Family. Effect of Electron-Accepting and -Donating Substituents on the Photophysical and Electrochemical Properties. <i>Inorganic Chemistry</i> , 1995 , 34, 2759-2767	5.1	394
9	Nature of the lowest energy excited state of a bis-phenanthroline [2]-catenand and its Cu(I), Ag(I) and Co(II) complexes. <i>Chemical Physics Letters</i> , 1995 , 241, 555-558	2.5	28
8	Supramolecular Photochemistry and Photophysics. A [3]-Catenand and its Mononuclear and Homoand Heterodinuclear [3]-Catenates. <i>Journal of the American Chemical Society</i> , 1994 , 116, 5211-5217	16.4	65
7	Absorption and emission properties of a 2-catenand, its protonated forms, and its complexes with Li+, Cu+, Ag+, Co2+, Ni2+, Zn2+, Pd2+ and Cd2+: tuning of the luminescence over the whole visible spectral region. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 3241		59
6	Dicopper(I) trefoil knots and related unknotted molecular systems: influence of ring size and structural factors on their synthesis and electrochemical and excited-state properties. <i>Journal of the American Chemical Society</i> , 1993 , 115, 11237-11244	16.4	113
5	Ligand substitution patterns control photophysical properties of ruthenium(II)-2,2?:6?,2?-terpyridine complexestoom temperature emission from [Ru(tpy)2]2+ analogues. <i>Polyhedron</i> , 1992 , 11, 2707-2709	2.7	55
4	Absorption and luminescence properties of 1, 10-phenanthroline, 2, 9-diphenyl-1, 10-phenanthroline, 2,9-dianisyl-1, 10-phenanthroline and their protonated forms in dichloromethane solution. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 553		111
3	Endoreceptors with Convergent Phenanthroline Units: A Molecular Cavity for Six Guest Molecules. <i>Angewandte Chemie International Edition in English</i> , 1991 , 30, 1333-1336		32
2	Endorezeptoren mit konvergenten Phenanthrolin-Einheiten: ein Hohlraum filsechs Gastmolekle. <i>Angewandte Chemie</i> , 1991 , 103, 1367-1369	3.6	14
1	Excited-state properties in supramolecular systems. Luminescence and intercomponent interactions in a 3-catenand and some 3-catenates. <i>Journal of the American Chemical Society</i> , 1991 , 113, 4033-4035	16.4	33