Gregory V. Lowry

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1724450/gregory-v-lowry-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 18,666 67 136 h-index g-index citations papers 20,897 170 7.07 9.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
160	Star Polymers with Designed Reactive Oxygen Species Scavenging and Agent Delivery Functionality Promote Plant Stress Tolerance <i>ACS Nano</i> , 2022 , 16, 4467-4478	16.7	3
159	Biological Barriers, Processes, and Transformations at the SoilPlantAtmosphere Interfaces Driving the Uptake, Translocation, and Bioavailability of Inorganic Nanoparticles to Plants 2022 , 123-1	52	
158	Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and Translocation. <i>Environmental Science & Environmental Science & </i>	10.3	32
157	Sulfidized Nanoscale Zero-Valent Iron: Tuning the Properties of This Complex Material for Efficient Groundwater Remediation. <i>Accounts of Materials Research</i> , 2021 , 2, 420-431	7.5	14
156	Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants. <i>Environmental Science & Environmental Sci</i>	10.3	9
155	Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 299-314	4.4	5
154	Investigation of pore water and soil extraction tests for characterizing the fate of poorly soluble metal-oxide nanoparticles. <i>Chemosphere</i> , 2021 , 267, 128885	8.4	3
153	Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. <i>Environmental Science & Environmental Science &</i>	10.3	3
152	Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. <i>Environmental Science & Company</i> , 2021, 55, 2628-2638	10.3	25
151	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
150	Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. <i>Environmental Science & Environmental Scie</i>	10.3	4
149	Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. <i>Environmental Science & Environmental Science & </i>	10.3	5
148	Guiding the design space for nanotechnology to advance sustainable crop production. <i>Nature Nanotechnology</i> , 2020 , 15, 801-810	28.7	49
147	Sulfur Loading and Speciation Control the Hydrophobicity, Electron Transfer, Reactivity, and Selectivity of Sulfidized Nanoscale Zerovalent Iron. <i>Advanced Materials</i> , 2020 , 32, e1906910	24	83
146	Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 528-542	4.3	32
145	Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for Agrochemical Delivery. <i>ACS Nano</i> , 2020 , 14, 10954-10965	16.7	38
144	CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. <i>Environmental Science & Environmental Science &</i>	10.3	25

(2019-2020)

143	Multistep Method to Extract Moderately Soluble Copper Oxide Nanoparticles from Soil for Quantification and Characterization. <i>Analytical Chemistry</i> , 2020 , 92, 9620-9628	7.8	6
142	Protein coating composition targets nanoparticles to leaf stomata and trichomes. <i>Nanoscale</i> , 2020 , 12, 3630-3636	7.7	25
141	Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm. <i>Environmental Science & Technology</i> , 2020 , 54, 1533-1544	10.3	17
140	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
139	Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). <i>Environmental Science: Nano</i> , 2020 , 7, 127-138	7.1	8
138	Iron and Sulfur Precursors Affect Crystalline Structure, Speciation, and Reactivity of Sulfidized Nanoscale Zerovalent Iron. <i>Environmental Science & Environmental Science & </i>	10.3	41
137	Copper and Gold Nanoparticles Increase Nutrient Excretion Rates of Primary Consumers. <i>Environmental Science & Environmental S</i>	10.3	3
136	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. <i>Nature Food</i> , 2020 , 1, 416-425	14.4	90
135	Effect of CeO2 nanomaterial surface functional groups on tissue and subcellular distribution of Ce in tomato (Solanum lycopersicum). <i>Environmental Science: Nano</i> , 2019 , 6, 273-285	7.1	23
134	Mechanistic, Mechanistic-Based Empirical, and Continuum-Based Concepts and Models for the Transport of Polyelectrolyte-Modified Nanoscale Zerovalent Iron (NZVI) in Saturated Porous Media 2019 , 235-291		1
133	Sulfide-Modified NZVI (S-NZVI): Synthesis, Characterization, and Reactivity 2019, 359-386		2
132	Opportunities and challenges for nanotechnology in the agri-tech revolution. <i>Nature Nanotechnology</i> , 2019 , 14, 517-522	28.7	281
131	Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. <i>ACS Nano</i> , 2019 , 13, 5291-5305	16.7	151
130	Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. <i>Environmental Science & Environmental Science & Environ</i>	10.3	100
129	Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber. <i>Science of the Total Environment</i> , 2019 , 668, 234-244	10.2	10
128	Effect of Soil Organic Matter, Soil pH, and Moisture Content on Solubility and Dissolution Rate of CuO NPs in Soil. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 4959-4967	10.3	55
127	Impact of mercury speciation on its removal from water by activated carbon and organoclay. <i>Water Research</i> , 2019 , 157, 600-609	12.5	21
126	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38

125	A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale zerovalent iron colloidal stability, toxicity, and reactivity to trichloroethylene. <i>Science of the Total Environment</i> , 2019 , 671, 254-261	10.2	37
124	Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	13
123	Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. <i>Environmental Science: Nano</i> , 2019 , 6, 2508-2519	7.1	46
122	Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	55
121	Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil. <i>Environmental Science & Environmental Science</i>	10.3	24
120	Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. <i>Chemical Engineering Journal</i> , 2019 , 359, 713-722	14.7	67
119	Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe nanoparticle reactivity with trichloroethylene. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 7157-7169	5.1	23
118	Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe nanoparticles in saturated porous media. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 7180-7199	5.1	24
117	Comparative Persistence of Engineered Nanoparticles in a Complex Aquatic Ecosystem. <i>Environmental Science & Environmental Sci</i>	10.3	44
116	Life cycle considerations of nano-enabled agrochemicals: are today's tools up to the task?. <i>Environmental Science: Nano</i> , 2018 , 5, 1057-1069	7.1	25
115	High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite. <i>Science of the Total Environment</i> , 2018 , 628-629, 177-185	10.2	21
114	Effect of silver concentration and chemical transformations on release and antibacterial efficacy in silver-containing textiles. <i>NanoImpact</i> , 2018 , 11, 51-57	5.6	24
113	CuO Nanoparticle Dissolution and Toxicity to Wheat (Triticum aestivum) in Rhizosphere Soil. <i>Environmental Science & Environmental Science & Environme</i>	10.3	108
112	Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. <i>NanoImpact</i> , 2018 , 9, 14-30	5.6	83
111	Size-Based Differential Transport, Uptake, and Mass Distribution of Ceria (CeO) Nanoparticles in Wetland Mesocosms. <i>Environmental Science & Environmental Science & Environme</i>	10.3	44
110	Temporal Evolution of Copper Distribution and Speciation in Roots of Triticum aestivum Exposed to CuO, Cu(OH), and CuS Nanoparticles. <i>Environmental Science & Environmental S</i>	10.3	27
109	Preparation of palladized carbon nanotubes encapsulated iron composites: highly efficient dechlorination for trichloroethylene and low corrosion of nanoiron. <i>Royal Society Open Science</i> , 2018 , 5, 172242	3.3	5
108	Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nature Nanotechnology, 2018, 13, 1072-1077	28.7	44

(2016-2018)

107	Speciation of Mercury in Selected Areas of the Petroleum Value Chain. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 1655-1664	10.3	18
106	Inching closer to realistic exposure models. <i>Nature Nanotechnology</i> , 2018 , 13, 983-985	28.7	2
105	Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. <i>Ecological Applications</i> , 2018 , 28, 1435-1449	4.9	22
104	Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. <i>Journal of Hazardous Materials</i> , 2017 , 322, 136-144	12.8	23
103	Time and Nanoparticle Concentration Affect the Extractability of Cu from CuO NP-Amended Soil. <i>Environmental Science & Environmental Science & Environ</i>	10.3	64
102	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. <i>Environmental Science: Nano</i> , 2017 , 4, 767-781	7.1	148
101	Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. <i>Chemosphere</i> , 2017 , 183, 323-331	8.4	24
100	Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl Simulated Carbon Storage Brines. <i>Accounts of Chemical Research</i> , 2017 , 50, 1332-1341	24.3	8
99	Characterizing convective heat transfer coefficients in membrane distillation cassettes. <i>Journal of Membrane Science</i> , 2017 , 538, 108-121	9.6	14
98	Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum). <i>Environmental Science & Environmental Sc</i>	10.3	97
97	Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	51
96	Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms. <i>Environmental Science & Environmental Science &</i>	10.3	24
95	Time-dependent bacterial transcriptional response to CuO nanoparticles differs from that of Cu2+ and provides insights into CuO nanoparticle toxicity mechanisms. <i>Environmental Science: Nano</i> , 2017 , 4, 2321-2335	7.1	7
94	Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron. <i>Environmental Science & Environmental Scien</i>	10.3	163
93	Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 215, 122-140	5.5	22
92	Aging of Dissolved Copper and Copper-based Nanoparticles in Five Different Soils: Short-term Kinetics vs. Long-term Fate. <i>Journal of Environmental Quality</i> , 2017 , 46, 1198-1205	3.4	49
91	Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. <i>Environmental Science: Nano</i> , 2017 , 4, 89-104	7.1	19
90	Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. <i>Environmental Science: Nano</i> , 2016 , 3, 953-965	7.1	173

89	In Situ Measurement of CuO and Cu(OH)2 Nanoparticle Dissolution Rates in Quiescent Freshwater Mesocosms. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 375-380	11	39
88	Press or pulse exposures determine the environmental fate of cerium nanoparticles in stream mesocosms. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1213-23	3.8	21
87	Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. <i>Environmental Science: Nano</i> , 2016 , 3, 283-310	7.1	117
86	Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications. <i>Journal of Hazardous Materials</i> , 2016 , 305, 87-95	12.8	46
85	Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept. <i>Environmental Science & Enhances & Environmental Science & Enhances & Environmental Science & Enhances & Environmental & Enviro</i>	10.3	55
84	Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 85-91	11	61
83	Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived. <i>Environmental Science & Environmental </i>	10.3	56
82	Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 17-27	9.3	22
81	Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. <i>Environmental Pollution</i> , 2016 , 213, 314-321	9.3	34
80	Mobility of Four Common Mercury Species in Model and Natural Unsaturated Soils. <i>Environmental Science & Environmental Science</i>	10.3	37
79	Dechlorination Mechanism of 2,4-Dichlorophenol by Magnetic MWCNTs Supported Pd/Fe Nanohybrids: Rapid Adsorption, Gradual Dechlorination, and Desorption of Phenol. <i>ACS Applied Materials & Desorption of Phenol.</i> 8, 7333-42	9.5	107
78	Biogeochemical transformations of mercury in solid waste landfills and pathways for release. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 176-89	4.3	21
77	Measurement of Setschenow constants for six hydrophobic compounds in simulated brines and use in predictive modeling for oil and gas systems. <i>Chemosphere</i> , 2016 , 144, 2247-56	8.4	12
76	Comparative Study of Effects of CO2Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer. <i>Environmental Engineering Science</i> , 2016 , 33, 806-816	2	9
75	New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds. <i>Environmental Science & Environmental Science </i>	10.3	6
74	Reduction in bacterial contamination of hospital textiles by a novel silver-based laundry treatment. <i>American Journal of Infection Control</i> , 2016 , 44, 1705-1708	3.8	11
73	Challenges Facing the Environmental Nanotechnology Research Enterprise 2016 , 1-19		1
72	Visualization tool for correlating nanomaterial properties and biological responses in zebrafish. <i>Environmental Science: Nano</i> , 2016 , 3, 1280-1292	7.1	4

(2013-2015)

71	in Increased Metal Uptake Relative to Bulk/Dissolved Metals. <i>Environmental Science & Emp;</i> Technology, 2015 , 49, 8751-8	10.3	77
70	A functional assay-based strategy for nanomaterial risk forecasting. <i>Science of the Total Environment</i> , 2015 , 536, 1029-1037	10.2	70
69	Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa). <i>Environmental Science & Environmental Sc</i>	10.3	81
68	Characterization of engineered alumina nanofibers and their colloidal properties in water. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	17
67	Much ado about #reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. <i>Environmental Science: Nano</i> , 2015 , 2, 27-32	7.1	39
66	Research strategy to determine when novel nanohybrids pose unique environmental risks. <i>Environmental Science: Nano</i> , 2015 , 2, 11-18	7.1	37
65	Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. <i>Environmental Pollution</i> , 2015 , 196, 239-46	9.3	106
64	Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. <i>Environmental Science & Environmental Science & Enviro</i>	5 ¹ 93	75
63	Modeling nanomaterial environmental fate in aquatic systems. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 2587-93	10.3	209
62	Correlation of the physicochemical properties of natural organic matter samples from different sources to their effects on gold nanoparticle aggregation in monovalent electrolyte. <i>Environmental Science & Camp; Technology</i> , 2015 , 49, 2188-98	10.3	79
61	Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. <i>Environmental Science & Environmental S</i>	10.3	288
60	Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. <i>Environmental Science: Nano</i> , 2014 , 1, 347-357	7.1	73
59	Response to Comment on Bulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity Environmental Science & Their Toxicity 48, 6051-6052	10.3	5
58	Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. <i>Environmental Science & Environmental Science & Environm</i>	10.3	125
57	Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces. <i>Environmental Chemistry</i> , 2014 , 11, 257	3.2	12
56	Current status and future direction for examining engineered nanoparticles in natural systems. <i>Environmental Chemistry</i> , 2014 , 11, 351	3.2	88
55	Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods using different CO2 sources. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 16, 129-144	4.2	30
54	Sulfidation of silver nanoparticles: natural antidote to their toxicity. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 13440-8	10.3	309

53	Modeling nanosilver transformations in freshwater sediments. <i>Environmental Science & Environmental Sc</i>	10.3	69
52	Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. <i>Environmental Science & Environmental Science &</i>	10.3	132
51	Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. <i>Environmental Science & Environmental Science & </i>	10.3	164
50	Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. <i>Environmental Science & Environmental Science & </i>	10.3	128
49	Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. <i>Environmental Science & Environmental Science & Environme</i>	10.3	304
48	Partitioning behavior of organic contaminants in carbon storage environments: a critical review. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2013 , 47, 37-54	10.3	35
47	Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. <i>PLoS ONE</i> , 2013 , 8, e57189	3.7	258
46	Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. <i>Journal of Colloid and Interface Science</i> , 2012 , 370, 1-10	9.3	156
45	Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. <i>Environmental Science & Environmental Science & Environ</i>	10.3	121
44	Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. <i>Environmental Science & Environmental Science & Environment</i>	10.3	164
43	Nanotechnology patenting trends through an environmental lens: analysis of materials and applications. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	21
42	Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids. <i>Langmuir</i> , 2012 , 28, 10334-47	4	42
41	Environmental transformations of silver nanoparticles: impact on stability and toxicity. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	1096
40	Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. <i>Environmental Science & Environmental Science & En</i>	10.3	321
39	Size-controlled dissolution of organic-coated silver nanoparticles. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 752-9	10.3	338
38	Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	192
37	Transformations of nanomaterials in the environment. <i>Environmental Science & Environmental Science & </i>	10.3	835
36	Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. <i>Environmental Science & Environmental Scien</i>	10.3	395

35	Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. <i>Environmental Science & Environmental Science & Environm</i>	10.3	117
34	Meditations on the ubiquity and mutability of nano-sized materials in the environment. <i>ACS Nano</i> , 2011 , 5, 8466-70	16.7	70
33	Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO2 sequestration. <i>Environmental Earth Sciences</i> , 2011 , 64, 925-948	2.9	38
32	Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. <i>Environmental Science & Environmental Science & Env</i>	10.3	76
31	Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy. <i>Environmental Science & Environmental Science</i>	10.3	77
30	Field Evaluation of Bauxite Residue Neutralization by Carbon Dioxide, Vegetation, and Organic Amendments. <i>Journal of Environmental Engineering, ASCE</i> , 2010 , 136, 1045-1053	2	32
29	Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. <i>Environmental Science & Technology</i> , 2010 , 44, 9086-93	10.3	122
28	Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 4531-8	10.3	137
27	Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. <i>Langmuir</i> , 2010 , 26, 16890-900	4	58
26	Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. <i>Environmental Science & Environmental Sc</i>	10.3	192
25	Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. <i>Journal of Environmental Quality</i> , 2010 , 39, 1867-74	3.4	89
24	Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. <i>Journal of Environmental Quality</i> , 2010 , 39, 1909-24	3.4	791
23	Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. <i>Journal of Contaminant Hydrology</i> , 2010 , 118, 152-64	3.9	94
22	Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. <i>Bioresource Technology</i> , 2010 , 101, 1141-6	11	206
21	Chemistry of the Acid Neutralization Capacity of Bauxite Residue. <i>Environmental Engineering Science</i> , 2009 , 26, 873-881	2	55
20	Neutralization of Bauxite Residue with Acidic Fly Ash. <i>Environmental Engineering Science</i> , 2009 , 26, 431	-4 <u>z</u> 40	14
19	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. <i>Nature Nanotechnology</i> , 2009 , 4, 634-41	28.7	1306
18	Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms. <i>Environmental Science & Environmental Science & </i>	10.3	199

17	Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	140
16	Mechanisms of Neutralization of Bauxite Residue by Carbon Dioxide. <i>Journal of Environmental Engineering, ASCE</i> , 2009 , 135, 433-438	2	67
15	Adsorption of polychlorinated biphenyls to activated carbon: equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. <i>Water Research</i> , 2008 , 42, 575-84	12.5	68
14	Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. <i>Journal of Nanoparticle Research</i> , 2008 , 10, 795-814	2.3	419
13	Development and Placement of a Sorbent-Amended Thin Layer Sediment Cap in the Anacostia River. <i>Soil and Sediment Contamination</i> , 2007 , 16, 313-322	3.2	46
12	Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. <i>Environmental Engineering Science</i> , 2007 , 24, 45-57	2	368
11	Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. <i>Environmental Science & Environmental Science & Environme</i>	10.3	271
10	Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. <i>Environmental Science & Environmental Science</i>	10.3	814
9	Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. <i>Environmental Science & Environmental Science & Environme</i>	10.3	722
8	Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. <i>Environmental Science & Environmental S</i>	10.3	380
7	Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. <i>Nano Letters</i> , 2005 , 5, 2489-94	11.5	282
6	Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron. <i>Chemistry of Materials</i> , 2005 , 17, 5315-5322	9.6	193
5	TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. <i>Environmental Science & Environmental Scien</i>	10.3	644
4	Using CaO- and MgO-rich industrial waste streams for carbon sequestration. <i>Energy Conversion and Management</i> , 2005 , 46, 687-699	10.6	139
3	Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings. <i>Environmental Science & Environmental Science & Environment</i>	10.3	83
2	Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. <i>Environmental Science & Environmental Science & </i>	10.3	314
1	Sorption and transformation of biocides from hydraulic fracturing in the Marcellus Shale: a review. <i>Environmental Chemistry Letters</i> ,1	13.3	