## Katrin Zwirglmaier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724424/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581, 465-469.                                                                                                                                                                        | 13.7 | 5,822     |
| 2  | Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, 2020, 382, 970-971.                                                                                                                                   | 13.9 | 3,343     |
| 3  | Global phylogeography of marine <i>Synechococcus</i> and <i>Prochlorococcus</i> reveals a<br>distinct partitioning of lineages among oceanic biomes. Environmental Microbiology, 2008, 10, 147-161.                                                                 | 1.8  | 398       |
| 4  | The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and<br>Implications for Biogeography. PLoS Biology, 2012, 10, e1001234.                                                                                                           | 2.6  | 225       |
| 5  | Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes. Science, 2006, 312, 918-921.                                                                                                                                                    | 6.0  | 193       |
| 6  | Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environmental<br>Microbiology, 2007, 9, 1278-1290.                                                                                                                          | 1.8  | 143       |
| 7  | Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of<br><i>Synechococcus</i> host genes localized to a hyperplastic region: implications for mechanisms of<br>cyanophage evolution. Environmental Microbiology, 2009, 11, 2370-2387. | 1.8  | 139       |
| 8  | Fluorescencein situhybridisation (FISH) – the next generation. FEMS Microbiology Letters, 2005, 246,<br>151-158.                                                                                                                                                    | 0.7  | 98        |
| 9  | Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR<br>biased towards marine algal plastids. Aquatic Microbial Ecology, 2006, 43, 79-93.                                                                          | 0.9  | 94        |
| 10 | Water olumn stratification governs the community structure of subtropical marine picophytoplankton. Environmental Microbiology Reports, 2011, 3, 473-482.                                                                                                           | 1.0  | 90        |
| 11 | Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization -<br>RING-FISH. Molecular Microbiology, 2003, 51, 89-96.                                                                                                           | 1.2  | 89        |
| 12 | Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and<br>Toxin Presence during Harmful Algal Blooms in Two South German Lakes. Frontiers in Microbiology,<br>2017, 8, 2387.                                              | 1.5  | 62        |
| 13 | Spatial Differences in East Scotia Ridge Hydrothermal Vent Food Webs: Influences of Chemistry,<br>Microbiology and Predation on Trophodynamics. PLoS ONE, 2013, 8, e65553.                                                                                          | 1.1  | 59        |
| 14 | Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Frontiers in Microbiology, 2015, 6, 1168.                                                                        | 1.5  | 48        |
| 15 | MinION as part of a biomedical rapidly deployable laboratory. Journal of Biotechnology, 2017, 250,<br>16-22.                                                                                                                                                        | 1.9  | 44        |
| 16 | Differential grazing of two heterotrophic nanoflagellates on marine <i>Synechococcus</i> strains.<br>Environmental Microbiology, 2009, 11, 1767-1776.                                                                                                               | 1.8  | 43        |
| 17 | Linking regional variation of epibiotic bacterial diversity and trophic ecology in a new species of<br>Kiwaidae (Decapoda, Anomura) from East Scotia Ridge (Antarctica) hydrothermal vents.<br>MicrobiologyOpen, 2015, 4, 136-150.                                  | 1.2  | 32        |
| 18 | Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression<br>in <i>Microcystis aeruginosa</i> . MicrobiologyOpen, 2017, 6, e00393.                                                                                            | 1.2  | 27        |

KATRIN ZWIRGLMAIER

| #  | Article                                                                                                                                                                                                                             | IF                | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 19 | Synechococcus diversity along a trophic gradient in the Osterseen Lake District, Bavaria.<br>Microbiology (United Kingdom), 2016, 162, 2053-2063.                                                                                   | 0.7               | 26            |
| 20 | Improved Fluorescence in situ Hybridization of Individual Microbial Cells Using Polynucleotide<br>Probes: The Network Hypothesis. Systematic and Applied Microbiology, 2003, 26, 327-337.                                           | 1.2               | 21            |
| 21 | Spatio-temporal distribution pattern of the picocyanobacterium Synechococcus in lakes of different trophic states: a comparison of flow cytometry and sequencing approaches. Hydrobiologia, 2018, 811, 77-92.                       | 1.0               | 20            |
| 22 | Improved Method for Polynucleotide Probe-Based Cell Sorting, Using DNA-Coated Microplates. Applied and Environmental Microbiology, 2004, 70, 494-497.                                                                               | 1.4               | 18            |
| 23 | Fauna of the Kemp Caldera and its upper bathyal hydrothermal vents (South Sandwich Arc,) Tj ETQq1 1 0.784314                                                                                                                        | 4 rgBT /Ον<br>₽.1 | erlock 10 Tfl |
| 24 | Establishment of a specimen panel for the decentralised technical evaluation of the sensitivity of 31<br>rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021.<br>Eurosurveillance, 2021, 26, .     | 3.9               | 14            |
| 25 | In vitro evaluation of the effect of mutations in primer binding sites on detection of SARS-CoV-2 by RT-qPCR. Journal of Virological Methods, 2022, 299, 114352.                                                                    | 1.0               | 11            |
| 26 | In Situ Functional Gene Analysis: Recognition of Individual Genes by Fluorescence In Situ<br>Hybridization. Methods in Enzymology, 2005, 397, 338-351.                                                                              | 0.4               | 10            |
| 27 | Biogeography of bacteriophages at four hydrothermal vent sites in the Antarctic based on g23 sequence diversity. FEMS Microbiology Letters, 2016, 363, fnw043.                                                                      | 0.7               | 8             |
| 28 | Morphotypes of virus-like particles in two hydrothermal vent fields on the East Scotia Ridge,<br>Antarctica. Bacteriophage, 2014, 4, e28732.                                                                                        | 1.9               | 6             |
| 29 | Pulse-Controlled Amplification–A new powerful tool for on-site diagnostics under resource limited conditions. PLoS Neglected Tropical Diseases, 2021, 15, e0009114.                                                                 | 1.3               | 6             |
| 30 | Rapid detection of SARS-CoV-2 by pulse-controlled amplification (PCA). Journal of Virological Methods, 2021, 290, 114083.                                                                                                           | 1.0               | 4             |
| 31 | Detection of Prokaryotic Cells with Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2010, 659, 349-362.                                                                                                           | 0.4               | 3             |
| 32 | Influence of cyanobacteria, mixotrophic flagellates, and virioplankton size fraction on transcription of microcystin synthesis genes in the toxic cyanobacterium <i>Microcystis aeruginosa</i> . MicrobiologyOpen, 2018, 7, e00538. | 1.2               | 3             |