Mattias C Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dispersal and spatiotemporal distribution of Protapion fulvipes in white clover fields: implications for pest management. Journal of Pest Science, 2022, 95, 917-930.	3.7	2
2	Do plant ploidy and pollinator tongue length interact to cause low seed yield in red clover?. Ecosphere, 2021, 12, e03416.	2.2	4
3	Floral scent and pollinator visitation in relation to floral colour morph in the mixedâ€mating annual herb <i>Collinsia heterophylla</i> . Nordic Journal of Botany, 2021, 39, .	0.5	6
4	Dispersal and competitive release affect the management of native and invasive tephritid fruit flies in large and smallholder farms in Ethiopia. Scientific Reports, 2021, 11, 2690.	3.3	3
5	Clear-cuts are temporary habitats, not matrix, for endangered grassland burnet moths (Zygaena spp.). Journal of Insect Conservation, 2020, 24, 269-277.	1.4	9
6	A sensitive period for the induction of host plant preference in a generalist herbivorous insect. Animal Behaviour, 2020, 169, 1-8.	1.9	3
7	Metapopulation dynamics over 25Âyears of a beetle, Osmoderma eremita, inhabiting hollow oaks. Oecologia, 2020, 194, 771-780.	2.0	7
8	Identification and Synthesis of Putative Pheromone Components of the Threatened Salt Marsh Bagworm Moth, Whittleia retiella (Lepidoptera: Psychidae). Journal of Chemical Ecology, 2020, 46, 115-127.	1.8	1
9	False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Progress in Neurobiology, 2019, 181, 101661.	5.7	8
10	Common Cerambycid Pheromone Components as Attractants for Longhorn Beetles (Cerambycidae) Breeding in Ephemeral Oak Substrates in Northern Europe. Journal of Chemical Ecology, 2019, 45, 537-548.	1.8	6
11	Characterization of olfactory sensory neurons in the red clover seed weevil, Protapion trifolii (Coleoptera: Brentidae) and comparison to the closely related species P. fulvipes. Journal of Insect Physiology, 2019, 119, 103948.	2.0	5
12	Transcriptome Analysis of Gene Families Involved in Chemosensory Function in Spodoptera littoralis (Lepidoptera: Noctuidae). BMC Genomics, 2019, 20, 428.	2.8	69
13	Identification of the aggregation-sex pheromone of Plagionotus arcuatus ssp. arcuatus (Coleoptera:) Tj ETQq1 1 2019, 106, 18.	0.784314 1.6	rgBT /Overlic 3
14	The aggregation-sex pheromones of the cerambycid beetles Anaglyptus mysticus and Xylotrechus antilope ssp. antilope: new model species for insect conservation through pheromone-based monitoring. Chemoecology, 2019, 29, 111-124.	1.1	7
15	The Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Plagionotus detritus ssp. detritus. Journal of Chemical Ecology, 2019, 45, 28-36.	1.8	10
16	A context-dependent induction of natal habitat preference in a generalist herbivorous insect. Behavioral Ecology, 2018, 29, 360-367.	2.2	26
17	With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Global Change Biology, 2018, 24, 631-643.	9.5	21
18	Identification of the Aggregation-sex Pheromone of the Cerambycid Beetle Phymatodes pusillus ssp. pusillus and Evidence of a Synergistic Effect from a Heterospecific Pheromone Component. Journal of Chemical Ecology, 2018, 44, 987-998.	1.8	11

MATTIAS C LARSSON

#	Article	IF	CITATIONS
19	Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature Communications, 2017, 8, 15709.	12.8	154
20	The role of pollinators, pests and different yield components for organic and conventional white clover seed yields. Field Crops Research, 2017, 210, 1-8.	5.1	13
21	Making the invisible visible: determining an accurate national distribution of <i>Elater ferrugineus</i> in the United Kingdom using pheromones. Insect Conservation and Diversity, 2017, 10, 283-293.	3.0	5
22	Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species. Journal of Chemical Ecology, 2016, 42, 853-868.	1.8	48
23	Revealing hidden species distribution with pheromones: the case of Synanthedon vespiformis (Lepidoptera: Sesiidae) in Sweden. Journal of Insect Conservation, 2016, 20, 11-21.	1.4	11
24	Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. Journal of Insect Conservation, 2015, 19, 567-580.	1.4	25
25	Field Abundance Patterns and Odor-Mediated Host Choice by Clover Seed Weevils, Apion fulvipes and Apion trifolii (Coleoptera: Apionidae). Journal of Economic Entomology, 2015, 108, 492-503.	1.8	6
26	Insect host plant selection in complex environments. Current Opinion in Insect Science, 2015, 8, 1-7.	4.4	115
27	Sex pheromones as a tool to overcome the Wallacean shortfall in conservation biology: a case of Elater ferrugineus Linnaeus, 1758 (Coleoptera: Elateridae). Journal of Insect Conservation, 2015, 19, 25-32.	1.4	16
28	†Do you remember the first time?' Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecology Letters, 2015, 18, 365-374.	6.4	69
29	High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: The case of Elater ferrugineus (Coleoptera, Elateridae). Biological Conservation, 2014, 171, 156-166.	4.1	26
30	Comparison of plant preference hierarchies of male and female moths and the impact of larval rearing hosts. Ecology, 2013, 94, 1744-1752.	3.2	80
31	Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle. PLoS ONE, 2013, 8, e66149.	2.5	31
32	Chemical ecology and insect conservation: optimising pheromone-based monitoring of the threatened saproxylic click beetle Elater ferrugineus. Journal of Insect Conservation, 2012, 16, 549-555.	1.4	20
33	Yeast, not fruit volatiles mediate <scp><i>D</i></scp> <i>rosophila melanogaster</i> attraction, oviposition and development. Functional Ecology, 2012, 26, 822-828.	3.6	355
34	Monitoring spatiotemporal variation in abundance and dispersal by a pheromone-kairomone system in the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus. Journal of Insect Conservation, 2011, 15, 891-902.	1.4	32
35	Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry: a case study on the threatened hermit beetle Osmoderma eremita. Biodiversity and Conservation, 2011, 20, 2883-2902.	2.6	40
36	Conflicting selection pressures on reproductive functions and speciation in plants. Evolutionary Ecology, 2009, 23, 147-157.	1.2	24

#	Article	IF	CITATIONS
37	Enantiomeric conservation of the maleâ€produced sex pheromone facilitates monitoring of threatened European hermit beetles (<i>Osmoderma</i> spp.). Entomologia Experimentalis Et Applicata, 2009, 133, 276-282.	1.4	23
38	Pheromone Monitoring of Rare and Threatened Insects: Exploiting a Pheromone–Kairomone System to Estimate Prey and Predator Abundance. Conservation Biology, 2009, 23, 1516-1525.	4.7	48
39	Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer Pachnoda marginata. Journal of Chemical Ecology, 2003, 29, 1253-1268.	1.8	31
40	Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths <i>Eriocrania</i> spp.(Lepidoptera: Eriocraniidae). Journal of Experimental Biology, 2002, 205, 989-998.	1.7	43