## **Thomas Schmickl**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1724334/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Re-embodiment of Honeybee Aggregation Behavior in an Artificial Micro-Robotic System. Adaptive Behavior, 2009, 17, 237-259.                                     | 1.9  | 156       |
| 2  | Get in touch: cooperative decision making based on robot-to-robot collisions. Autonomous Agents<br>and Multi-Agent Systems, 2009, 18, 133-155.                  | 2.1  | 133       |
| 3  | Standard methods for behavioural studies of <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-58.                                            | 1.5  | 122       |
| 4  | Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie, 2004, 35, 249-263.             | 2.0  | 103       |
| 5  | Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, 2021, 60, 100762.                    | 8.1  | 91        |
| 6  | HoPoMo: A model of honeybee intracolonial population dynamics and resource management.<br>Ecological Modelling, 2007, 204, 219-245.                             | 2.5  | 83        |
| 7  | CoCoRo The Self-Aware Underwater Swarm. , 2011, , .                                                                                                             |      | 67        |
| 8  | Dynamics of Collective Decision Making of Honeybees in Complex Temperature Fields. PLoS ONE, 2013, 8, e76250.                                                   | 2.5  | 55        |
| 9  | Symbiotic robot organisms. , 2008, , .                                                                                                                          |      | 54        |
| 10 | Costs of Environmental Fluctuations and Benefits of Dynamic Decentralized Foraging Decisions in Honey Bees. Adaptive Behavior, 2004, 12, 263-277.               | 1.9  | 45        |
| 11 | Adaptive collective decision-making in limited robot swarms without communication. International<br>Journal of Robotics Research, 2013, 32, 35-55.              | 8.5  | 44        |
| 12 | Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems, 2009, 57, 913-921.                            | 5.1  | 43        |
| 13 | Antbots: A Feasible Visual Emulation of Pheromone Trails for Swarm Robots. Lecture Notes in<br>Computer Science, 2010, , 84-94.                                 | 1.3  | 40        |
| 14 | Robots mediating interactions between animals for interspecies collective behaviors. Science<br>Robotics, 2019, 4, .                                            | 17.6 | 40        |
| 15 | Analysis of emergent symmetry breaking in collective decision making. Neural Computing and Applications, 2012, 21, 207-218.                                     | 5.6  | 39        |
| 16 | Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Mathematical and Computer Modelling of Dynamical Systems, 2012, 18, 87-100. | 2.2  | 38        |
| 17 | Collective Perception in a Robot Swarm. , 2006, , 144-157.                                                                                                      |      | 31        |
|    |                                                                                                                                                                 |      |           |

18 Flora Robotica - Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids. , 2015, , .

 $\mathbf{31}$ 

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition. Adaptive Behavior, 2016, 24, 87-101.                                                               | 1.9 | 31        |
| 20 | A Minimalist Flocking Algorithm for Swarm Robots. Lecture Notes in Computer Science, 2011, , 375-382.                                                                                                       | 1.3 | 30        |
| 21 | A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation. , 2006, , 1-13.                                                                                                               |     | 27        |
| 22 | Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms. Lecture<br>Notes in Computer Science, 2015, , 201-217.                                                            | 1.3 | 27        |
| 23 | How regulation based on a common stomach leads to economic optimization of honeybee foraging.<br>Journal of Theoretical Biology, 2016, 389, 274-286.                                                        | 1.7 | 26        |
| 24 | A hormone-based controller for evolutionary multi-modular robotics: From single modules to gait learning. , 2010, , .                                                                                       |     | 25        |
| 25 | Development of a New Method to Track Multiple Honey Bees with Complex Behaviors on a Flat<br>Laboratory Arena. PLoS ONE, 2014, 9, e84656.                                                                   | 2.5 | 25        |
| 26 | Integral feedback control is at the core of task allocation and resilience of insect societies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13180-13185. | 7.1 | 25        |
| 27 | Optimisation of a honeybee-colony's energetics via social learning based on queuing delays.<br>Connection Science, 2008, 20, 193-210.                                                                       | 3.0 | 24        |
| 28 | Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations. Neural Computing and Applications, 2012, 21, 251-268.                                      | 5.6 | 24        |
| 29 | Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging. PLoS<br>ONE, 2017, 12, e0188004.                                                                                | 2.5 | 24        |
| 30 | From honeybees to robots and back: division of labour based on partitioning social inhibition.<br>Bioinspiration and Biomimetics, 2015, 10, 066005.                                                         | 2.9 | 23        |
| 31 | The interplay of sex ratio, male success and density-independent mortality affects population dynamics. Ecological Modelling, 2010, 221, 1089-1097.                                                         | 2.5 | 22        |
| 32 | Vascular morphogenesis controller. , 2017, , .                                                                                                                                                              |     | 20        |
| 33 | A Model of Symmetry Breaking in Collective Decision-Making. Lecture Notes in Computer Science, 2010,<br>, 639-648.                                                                                          | 1.3 | 20        |
| 34 | Time Delay Implies Cost on Task Switching: A Model to Investigate the Efficiency of Task Partitioning.<br>Bulletin of Mathematical Biology, 2013, 75, 1181-1206.                                            | 1.9 | 19        |
| 35 | Analysis and implementation of an Artificial Homeostatic Hormone System: A first case study in robotic hardware. , 2009, , .                                                                                |     | 18        |
| 36 | Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics. Journal of the Royal Society Interface, 2019, 16, 20190238.                                 | 3.4 | 18        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ASSISI: Mixing Animals with Robots in a Hybrid Society. Lecture Notes in Computer Science, 2013, , 441-443.                                                                | 1.3 | 18        |
| 38 | Modelling a hormone-inspired controller for individual- and multi-modular robotic systems.<br>Mathematical and Computer Modelling of Dynamical Systems, 2011, 17, 221-242. | 2.2 | 17        |
| 39 | Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony. PLoS ONE, 2014, 9, e114611.                          | 2.5 | 17        |
| 40 | Towards Bio-hybrid Systems Made of Social Animals and Robots. Lecture Notes in Computer Science, 2013, , 384-386.                                                          | 1.3 | 17        |
| 41 | Spatial macroscopic models of a bio-inspired robotic swarm algorithm. , 2008, , .                                                                                          |     | 16        |
| 42 | Algorithmic requirements for swarm intelligence in differently coupled collective systems. Chaos,<br>Solitons and Fractals, 2013, 50, 100-114.                             | 5.1 | 16        |
| 43 | subCULTron - Cultural Development as a Tool in Underwater Robotics. Communications in Computer and Information Science, 2018, , 27-41.                                     | 0.5 | 16        |
| 44 | Emergent Flocking with Low-End Swarm Robots. Lecture Notes in Computer Science, 2010, , 424-431.                                                                           | 1.3 | 16        |
| 45 | Generation of Diversity in a Reaction-Diffusion-Based Controller. Artificial Life, 2014, 20, 319-342.                                                                      | 1.3 | 15        |
| 46 | Autonomously shaping natural climbing plants: a bio-hybrid approach. Royal Society Open Science,<br>2018, 5, 180296.                                                       | 2.4 | 15        |
| 47 | Tracking of Multiple Honey Bees on a Flat Surface. , 2012, , .                                                                                                             |     | 13        |
| 48 | A Hormone-Based Controller for Evaluation-Minimal Evolution in Decentrally Controlled Systems.<br>Artificial Life, 2012, 18, 165-198.                                      | 1.3 | 13        |
| 49 | Modelling the swarm: Analysing biological and engineered swarm systems. Mathematical and Computer Modelling of Dynamical Systems, 2012, 18, 1-12.                          | 2.2 | 13        |
| 50 | Coupled inverted pendulums. , 2011, , .                                                                                                                                    |     | 12        |
| 51 | How a life-like system emerges from a simplistic particle motion law. Scientific Reports, 2016, 6, 37969.                                                                  | 3.3 | 12        |
| 52 | BEECLUST used for exploration tasks in Autonomous Underwater Vehiclesâ~ IFAC-PapersOnLine, 2015, 48,<br>819-824.                                                           | 0.9 | 11        |
| 53 | Governing the swarm: Controlling a bio-hybrid society of bees & robots with computational feedback loops. , 2017, , .                                                      |     | 11        |
| 54 | Social Integrating Robots Suggest Mitigation Strategies for Ecosystem Decay. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612605.                               | 4.1 | 11        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Understanding Ecosystem Stability and Resilience Through Mathematical Modeling. , 2020, , 1-17.                                                                                 |     | 11        |
| 56 | A Minimally Invasive Approach Towards "Ecosystem Hacking―With Honeybees. Frontiers in Robotics<br>and AI, 2022, 9, 791921.                                                      | 3.2 | 11        |
| 57 | Open-ended on-board Evolutionary Robotics for robot swarms. , 2009, , .                                                                                                         |     | 10        |
| 58 | ASSISI: Charged Hot Bees Shakin' in the Spotlight. , 2013, , .                                                                                                                  |     | 10        |
| 59 | Social Inhibition Manages Division of Labour in Artificial Swarm Systems. , 0, , .                                                                                              |     | 10        |
| 60 | A robot to shape your natural plant. , 2018, , .                                                                                                                                |     | 9         |
| 61 | Regenerative Abilities in Modular Robots Using Virtual Embryogenesis. Lecture Notes in Computer Science, 2011, , 227-237.                                                       | 1.3 | 9         |
| 62 | Freshwater organisms potentially useful as biosensors and power-generation mediators in biohybrid robotics. Biological Cybernetics, 2021, 115, 615-628.                         | 1.3 | 9         |
| 63 | On Adaptive Self-Organization in Artificial Robot Organisms. , 2009, , .                                                                                                        |     | 8         |
| 64 | Self-organized pattern formation in a swarm system as a transient phenomenon of non-linear dynamics. Mathematical and Computer Modelling of Dynamical Systems, 2012, 18, 39-50. | 2.2 | 8         |
| 65 | Evolved Control of Natural Plants. ACM Transactions on Autonomous and Adaptive Systems, 2017, 12, 1-24.                                                                         | 0.8 | 8         |
| 66 | Collective Change Detection: Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot<br>Swarms. , 2019, , .                                                         |     | 8         |
| 67 | How to Engineer Robotic Organisms and Swarms?. Studies in Computational Intelligence, 2011, , 25-52.                                                                            | 0.9 | 8         |
| 68 | EMANN - a model of emotions in an artificial neural network. , 2013, , .                                                                                                        |     | 8         |
| 69 | FSTaxis Algorithm: Bio-Inspired Emergent Gradient Taxis. , 2016, , .                                                                                                            |     | 8         |
| 70 | The efficiency of the RULES-4 classification learning algorithm in predicting the density of agents.<br>Cogent Engineering, 2014, 1, 986262.                                    | 2.2 | 7         |
| 71 | Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation. , 2014, , .                                                  |     | 7         |
| 72 | Bottom-up ecology: an agent-based model on the interactions between competition and predation.<br>Letters in Biomathematics, 2016, 3, 161-180.                                  | 0.1 | 7         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Model for Bio-Inspired Underwater Swarm Robotic Exploration. IFAC-PapersOnLine, 2018, 51, 385-390.                                                                                           | 0.9 | 7         |
| 74 | Optical Networking in a Swarm of Microrobots. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 107-119.                    | 0.3 | 7         |
| 75 | How Two Cooperating Robot Swarms Are Affected by Two Conflictive Aggregation Spots. Lecture Notes in Computer Science, 2011, , 367-374.                                                        | 1.3 | 7         |
| 76 | Novel Concept of Modelling Embryology for Structuring an Artificial Neural Network. SNE<br>Simulation Notes Europe, 2010, 20, 25-32.                                                           | 0.3 | 7         |
| 77 | Evolving Diverse Collective Behaviors Independent of Swarm Density. , 2015, , .                                                                                                                |     | 6         |
| 78 | Collective Motion as an Ultimate Effect in Crowded Selfish Herds. Scientific Reports, 2019, 9, 6618.                                                                                           | 3.3 | 6         |
| 79 | A swarm design paradigm unifying swarm behaviors using minimalistic communication. Bioinspiration and Biomimetics, 2020, 15, 036005.                                                           | 2.9 | 6         |
| 80 | CIMAX: collective information maximization in robotic swarms using local communication. Adaptive Behavior, 2021, 29, 297-314.                                                                  | 1.9 | 6         |
| 81 | Profiling Underwater Swarm Robotic Shoaling Performance Using Simulation. Lecture Notes in Computer Science, 2014, , 404-416.                                                                  | 1.3 | 6         |
| 82 | Social Adaptation of Robots for Modulating Self-Organization in Animal Societies. , 2014, , .                                                                                                  |     | 5         |
| 83 | Resilience and Stability of Ecological and Social Systems. , 2020, , .                                                                                                                         |     | 5         |
| 84 | Effects of Sinusoidal Vibrations on the Motion Response of Honeybees. Frontiers in Physics, 2021, 9, .                                                                                         | 2.1 | 5         |
| 85 | aMussels: Diving and Anchoring in a New Bio-inspired Under-Actuated Robot Class for Long-Term<br>Environmental Exploration and Monitoring. Lecture Notes in Computer Science, 2017, , 300-314. | 1.3 | 5         |
| 86 | Evolving a Novel Bio-inspired Controller in Reconfigurable Robots. Lecture Notes in Computer Science, 2011, , 132-139.                                                                         | 1.3 | 5         |
| 87 | Influence of a Social Gradient on a Swarm of Agents Controlled by the BEECLUST Algorithm. , 0, , .                                                                                             |     | 5         |
| 88 | Coordination of collective behaviours in spatially separated agents. , 0, , .                                                                                                                  |     | 5         |
| 89 | Mycelial Beehives of HIVEOPOLIS: Designing and Building Therapeutic Inner Nest Environments for Honeybees. Biomimetics, 2022, 7, 75.                                                           | 3.3 | 5         |
| 90 | WOSPP - A Wave Oriented Swarm Programming Paradigm. IFAC-PapersOnLine, 2018, 51, 379-384.                                                                                                      | 0.9 | 4         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Morphogenesis as a Collective Decision of Agents Competing for Limited Resource: A Plants Approach.<br>Lecture Notes in Computer Science, 2018, , 84-96.                               | 1.3 | 4         |
| 92  | An Individual-Based Model of Task Selection in Honeybees. Lecture Notes in Computer Science, 2008, , 383-392.                                                                          | 1.3 | 4         |
| 93  | Using Virtual Embryogenesis for Structuring Controllers. Lecture Notes in Computer Science, 2010, , 312-313.                                                                           | 1.3 | 4         |
| 94  | Using Virtual Embryogenesis in Multi-robot Organisms. Lecture Notes in Computer Science, 2011, ,<br>238-247.                                                                           | 1.3 | 4         |
| 95  | Collective Change Detection: Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot<br>Swarms. , 2019, , .                                                                |     | 4         |
| 96  | Development of morphology based on resource distribution: Finding the shortest path in a maze by vascular morphogenesis controller. , 2017, , .                                        |     | 4         |
| 97  | Thermodynamics of emergence: Langton's ant meets Boltzmann. , 2011, , .                                                                                                                |     | 3         |
| 98  | Estimation of moving agents density in 2D space based on LSTM neural network. , 2017, , .                                                                                              |     | 3         |
| 99  | Evolving robot controllers for a bio-hybrid system. , 2018, , .                                                                                                                        |     | 3         |
| 100 | Towards swarm level optimisation: the role of different movement patterns in swarm systems.<br>International Journal of Parallel, Emergent and Distributed Systems, 2019, 34, 241-259. | 1.0 | 3         |
| 101 | Economics of Specialization in Honeybees. Lecture Notes in Computer Science, 2011, , 358-366.                                                                                          | 1.3 | 3         |
| 102 | Evolving Reactive Controller for a Modular Robot: Benefits of the Property of State-Switching in Fractal Gene Regulatory Networks. Lecture Notes in Computer Science, 2012, , 209-218. | 1.3 | 3         |
| 103 | Growth of Structured Artificial Neural Networks by Virtual Embryogenesis. Lecture Notes in Computer Science, 2011, , 118-125.                                                          | 1.3 | 3         |
| 104 | Analysis of Swarm Behaviors Based on an Inversion of the Fluctuation Theorem. Artificial Life, 2014, 20, 77-93.                                                                        | 1.3 | 2         |
| 105 | Vascular Morphogenesis Controller: A Distributed Controller for Growing Artificial Structures. , 2016, , .                                                                             |     | 2         |
| 106 | Evolving vascular morphogenesis controller to demonstrate locomotion. , 2017, , .                                                                                                      |     | 2         |
| 107 | Design choices for adapting bio-hybrid systems with evolutionary computation. , 2017, , .                                                                                              |     | 2         |
| 108 | Perverse Bienen Artificial Life und der Apfel der Erkenntnis. Zeitschrift Für Medienwissenschaft, 2018,<br>10, 98-110.                                                                 | 0.1 | 2         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Investigation of Cue-Based Aggregation Behaviour in Complex Environments. Lecture Notes of the<br>Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 18-36. | 0.3 | 2         |
| 110 | A cellular model of swarm intelligence in bees and robots. , 2017, , .                                                                                                                                   |     | 2         |
| 111 | Evolution of Spatial Pattern Formation by Autonomous Bio-Inspired Cellular Controllers. , 0, , .                                                                                                         |     | 2         |
| 112 | Cooperation of two different swarms controlled by BEECLUST algorithm. , 0, , .                                                                                                                           |     | 2         |
| 113 | swarmFSTaxis: Borrowing a Swarm Communication Mechanism from Fireflies and Slime Mold.<br>Understanding Complex Systems, 2019, , 213-222.                                                                | 0.6 | 2         |
| 114 | Simple Physical Interactions Yield Social Self-Organization in Honeybees. Frontiers in Physics, 2021, 9, .                                                                                               | 2.1 | 2         |
| 115 | Novel method of virtual embryogenesis for structuring Artificial Neural Network controllers.<br>Mathematical and Computer Modelling of Dynamical Systems, 2013, 19, 375-387.                             | 2.2 | 1         |
| 116 | Modelling "Breaking Bad― An economic model of drugs and population dynamics to predict how the series itself feeds back into the drug market. IFAC-PapersOnLine, 2015, 48, 697-698.                      | 0.9 | 1         |
| 117 | Fundamentalism in a social learning perspective: A memetic agent model of vegetarianism, social interaction networks and food markets. , 2017, , .                                                       |     | 1         |
| 118 | Automatic tracking method for multiple honeybees using backward-play movies. , 2017, , .                                                                                                                 |     | 1         |
| 119 | Robotic Sensing and Stimuli Provision for Guided Plant Growth. Journal of Visualized Experiments, 2019, , .                                                                                              | 0.3 | 1         |
| 120 | Wankelmut: A Simple Benchmark for the Evolvability of Behavioral Complexity. Applied Sciences (Switzerland), 2021, 11, 1994.                                                                             | 2.5 | 1         |
| 121 | Quantification and Analysis of the Resilience of Two Swarm Intelligent Algorithms. , 0, , .                                                                                                              |     | 1         |
| 122 | Robotic oligarchy: How a few members can control their whole society by doing almost nothing. , 2017, , .                                                                                                |     | 1         |
| 123 | Evolving Collective Behaviors With Diverse But Predictable Sensor States. , 0, , .                                                                                                                       |     | 1         |
| 124 | Collective Decision Making in a Swarm of Robots: How Robust the BEECLUST Algorithm Performs in Various Conditions. , 2016, , .                                                                           |     | 1         |
| 125 | Evolving Mixed Societies: A one-dimensional modelling approach. , 2016, , .                                                                                                                              |     | 1         |
| 126 | Estimating Dynamics of Honeybee Population Densities with Machine Learning Algorithms. Lecture Notes in Computer Science, 2018, , 309-321.                                                               | 1.3 | 1         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Social Stomach. , 2020, , 1-4.                                                                                                                                                                                                    |     | 1         |
| 128 | Social Distancing in Robot Swarms: Modulating Exploitation and Exploration Without Signal Exchange. , 2020, , .                                                                                                                   |     | 1         |
| 129 | Convolutional Neural Network for Honeybee Density Estimation. , 2020, , .                                                                                                                                                         |     | 1         |
| 130 | Forest Fires: Fire Management and the Power Law. , 2020, , 63-77.                                                                                                                                                                 |     | 1         |
| 131 | Ultimate Ecology: How a socio-economic game can evolve into a resilient ecosystem of agents. , 2017, , .                                                                                                                          |     | 0         |
| 132 | SOCO 2018 Foreword. , 2018, , .                                                                                                                                                                                                   |     | 0         |
| 133 | Locomotion as a Result of Displacement of Resources. , 2018, , .                                                                                                                                                                  |     | 0         |
| 134 | Collective Event Detection Using Bio-inspired Minimalistic Communication in a Swarm of Underwater Robots. , 2019, , .                                                                                                             |     | 0         |
| 135 | Social Stomach. , 2021, , 868-871.                                                                                                                                                                                                |     | 0         |
| 136 | Evolving for Creativity: Maximizing Complexity in a Self-organized Multi-particle System. Lecture Notes in Computer Science, 2011, , 442-449.                                                                                     | 1.3 | 0         |
| 137 | Virtual Spatiality in Agent Controllers: Encoding Compartmentalization. Lecture Notes in Computer Science, 2013, , 579-588.                                                                                                       | 1.3 | 0         |
| 138 | Evolving Controllers for Programmable Robots to Influence Non-programmable Lifeforms: A Casy<br>Study. Lecture Notes in Computer Science, 2015, , 831-841.                                                                        | 1.3 | 0         |
| 139 | A Model of â€~Breaking Bad': An Economic Model of Drugs and Population Dynamics Predicts how the TV<br>Series Feeds Back to the Drug Market. SNE Simulation Notes Europe, 2016, 26, 167-174.                                      | 0.3 | 0         |
| 140 | Virtual Animal Studies/Hybrid Societies. , 2019, , 1-23.                                                                                                                                                                          |     | 0         |
| 141 | A Heuristic Trajectory Decision Method to Enhance the Tracking Performance of Multiple Honeybees<br>on a Flat Laboratory Arena. Transactions of the Institute of Systems Control and Information<br>Engineers, 2019, 32, 113-122. | 0.1 | 0         |
| 142 | Virtual Animal Studies/Hybrid Societies. , 2020, , 629-651.                                                                                                                                                                       |     | 0         |
| 143 | Ants and Bees: Common Stomach Regulation Provide Stability for Societies. , 2020, , 107-123.                                                                                                                                      |     | 0         |
| 144 | The Importance of Life History and Population Interactions in Population Growth. , 2020, , 19-45.                                                                                                                                 |     | 0         |

| #   | Article                                                                                                  | IF | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------|----|-----------|
| 145 | Material Flow, Task Partition, and Self-Organization in Wasp Societies. , 2020, , 79-106.                |    | 0         |
| 146 | Generalization of the Common Stomach: Integral Control at the Supra-Individual Level. , 2020, , 125-147. |    | 0         |