Richard D Haigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1723975/publications.pdf Version: 2024-02-01

РІСНАР D НАІСН

#	Article	IF	CITATIONS
1	Exhaled SARS-CoV-2 RNA viral load kinetics measured by facemask sampling associates with household transmission. Clinical Microbiology and Infection, 2023, 29, 254.e1-254.e6.	6.0	7
2	Exhaled SARS-CoV-2 quantified by face-mask sampling in hospitalised patients with COVID-19. Journal of Infection, 2021, 82, 253-259.	3.3	38
3	Pathogenic Differences of Type 1 Restriction-Modification Allele Variants in Experimental Listeria monocytogenes Meningitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 590657.	3.9	4
4	Lineageâ€specific evolution and gene flow inListeria monocytogenesare independent of bacteriophages. Environmental Microbiology, 2020, 22, 5058-5072.	3.8	16
5	Deletion of the Zinc Transporter Lipoprotein AdcAll Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System. MBio, 2020, 11, .	4.1	8
6	Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. Journal of Bacteriology, 2019, 201, .	2.2	22
7	Determination of Repeat Number and Expression States of Phase-Variable Loci Through Next Generation Sequencing and Bioinformatic Analysis. Methods in Molecular Biology, 2019, 1969, 83-92.	0.9	1
8	An ex vivo porcine spleen perfusion as a model of bacterial sepsis. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 29-38.	1.5	8
9	Sputum Moraxella catarrhalis strains exhibit diversity within and between COPD subjects. International Journal of COPD, 2018, Volume 13, 3663-3667.	2.3	4
10	Phase-variable methylation and epigenetic regulation by type I restriction–modification systems. FEMS Microbiology Reviews, 2017, 41, S3-S15.	8.6	110
11	Draft Whole-Genome Sequences of Periodontal Pathobionts Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia Contain Phase-Variable Restriction-Modification Systems. Genome Announcements, 2017, 5, .	0.8	10
12	Salad Leaf Juices Enhance Salmonella Growth, Colonization of Fresh Produce, and Virulence. Applied and Environmental Microbiology, 2017, 83, .	3.1	32
13	Dissemination of Novel Antimicrobial Resistance Mechanisms through the Insertion Sequence Mediated Spread of Metabolic Genes. Frontiers in Microbiology, 2016, 7, 1008.	3.5	40
14	A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nature Communications, 2014, 5, 5055.	12.8	264
15	Role of porin proteins in acquisition of transferrin iron by enteropathogens. Microbiology (United) Tj ETQq1 1	0.784314 rg 1.8	BT/Overloc
16	Mutation design and strain background influence the phenotype of <i><scp>E</scp>scherichia coli</i> â€ <scp><i>luxS</i></scp> mutants. Molecular Microbiology, 2013, 88, 951-969.	2.5	11
17	Identification and Characterization of a New Ferric Enterobactin Receptor, CfrB, in <i>Campylobacter</i> . Journal of Bacteriology, 2010, 192, 4425-4435.	2.2	50
18	Elucidation of the Mechanism by Which Catecholamine Stress Hormones Liberate Iron from the Innate Immune Defense Proteins Transferrin and Lactoferrin. Journal of Bacteriology, 2010, 192, 587-594.	2.2	117

RICHARD D HAIGH

#	Article	IF	CITATIONS
19	Experimental Design Considerations for In Vitro Microbial Endocrinology Investigations. , 2010, , 291-308.		2
20	Microbial endocrinology: how stress influences susceptibility to infection. Trends in Microbiology, 2008, 16, 55-64.	7.7	252
21	Catecholamine Inotrope Resuscitation of Antibioticâ€Damaged Staphylococci and Its Blockade by Specific Receptor Antagonists. Journal of Infectious Diseases, 2008, 197, 1044-1052.	4.0	33
22	Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiology Letters, 2007, 269, 221-228.	1.8	103
23	Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics, 2007, 8, 410.	2.8	66
24	Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiology, 2007, 7, 8.	3.3	96
25	Influence of dietary catechols on the growth of enteropathogenic bacteria. International Journal of Food Microbiology, 2007, 119, 159-169.	4.7	44
26	Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagicEscherichia coli. FEMS Microbiology Letters, 2003, 222, 39-43.	1.8	101
27	Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet, The, 2003, 361, 130-135.	13.7	179
28	Growth Stimulation of Intestinal Commensal Escherichia coli by Catecholamines: A Possible Contributory Factor in Trauma-Induced Sepsis. Shock, 2002, 18, 465-470.	2.1	188
29	An in vitro transposon system for highly regulated gene expression: construction of Escherichia coli strains with arabinose-dependent growth at low temperatures. Gene, 2001, 280, 145-151.	2.2	11
30	Extrusion of actin-positive strands from HEp-2 and Int 407 cells caused by outer membrane preparations of enteropathogenicEscherichia coliand specific attachment of wild type bacteria to the strands. Canadian Journal of Microbiology, 2001, 47, 727-734.	1.7	9
31	Catecholamine inotropes as growth factors forStaphylococcus epidermidisand other coagulase-negative staphylococci. FEMS Microbiology Letters, 2001, 194, 163-169.	1.8	76
32	Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiology Letters, 2001, 194, 163-169.	1.8	1
33	Cytopathic effects of outer-membrane preparations of enteropathogenic Escherichia coli and co-expression of maltoporin with secretory virulence factor, EspB. Journal of Medical Microbiology, 2001, 50, 602-612.	1.8	16
34	Extrusion of actin-positive strands from HEp-2 and Int 407 cells caused by outer membrane preparations of enteropathogenic <i>Escherichia coli</i> and specific attachment of wild type bacteria to the strands. Canadian Journal of Microbiology, 2001, 47, 727-734.	1.7	5
35	The Mammalian Neuroendocrine Hormone Norepinephrine Supplies Iron for Bacterial Growth in the Presence of Transferrin or Lactoferrin. Journal of Bacteriology, 2000, 182, 6091-6098.	2.2	183
36	Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiology Letters, 1999, 172, 53-60.	1.8	160

#	Article	IF	CITATIONS
37	Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiology Letters, 1999, 172, 53-60.	1.8	5
38	A novel C-terminal signal sequence targets Escherichia coli haemolysin directly to the medium. Journal of Cell Science, 1989, 1989, 45-57.	2.0	104