Juha M Hyyppä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172287/publications.pdf

Version: 2024-02-01

316 papers 16,291 citations

71
h-index

22166 113 g-index

324 all docs

324 docs citations

times ranked

324

8622 citing authors

#	Article	IF	CITATIONS
1	A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 969-975.	6.3	554
2	Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115, 63-77.	11.1	511
3	Laser scanning of forest resources: the nordic experience. Scandinavian Journal of Forest Research, 2004, 19, 482-499.	1.4	386
4	An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sensing, 2012, 4, 950-974.	4.0	376
5	Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 2000, 128, 109-120.	3.2	318
6	Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 2004, 90, 319-330.	11.0	307
7	Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sensing, 2017, 9, 185.	4.0	307
8	Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 28-37.	11.1	286
9	A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 514-522.	11.1	276
10	Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 10-31.	11.1	265
11	Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment, 2004, 90, 451-462.	11.0	262
12	Mini-UAV-Borne LIDAR for Fine-Scale Mapping. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 426-430.	3.1	260
13	International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 137-179.	11.1	254
14	Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 661-670.	6.3	236
15	Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 327-342.	11.1	220
16	Individual tree biomass estimation using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75, 64-75.	11.1	214
17	Detection of Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser Scanning Data. Remote Sensing, 2010, 2, 641-664.	4.0	209
18	Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 2010, 44, .	1.3	195

#	Article	IF	CITATIONS
19	Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147, 132-145.	11.1	179
20	Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping. Sensors, 2008, 8, 5238-5249.	3.8	171
21	Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sensing, 2013, 5, 6382-6407.	4.0	166
22	Automated Stem Curve Measurement Using Terrestrial Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1739-1748.	6.3	166
23	Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Canadian Journal of Remote Sensing, 2013, 39, 382-395.	2.4	165
24	The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Canadian Journal of Forest Research, 2004, 34, 1791-1801.	1.7	161
25	Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source. Sensors, 2010, 10, 7057-7066.	3.8	157
26	Multiplatform Mobile Laser Scanning: Usability and Performance. Sensors, 2012, 12, 11712-11733.	3.8	156
27	Advances in Forest Inventory Using Airborne Laser Scanning. Remote Sensing, 2012, 4, 1190-1207.	4.0	151
28	Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology and Management, 2005, 216, 41-50.	3.2	146
29	Comparison of the Selected State-Of-The-Art 3D Indoor Scanning and Point Cloud Generation Methods. Remote Sensing, 2017, 9, 796.	4.0	141
30	Estimation of stem volume using laser scanning-based canopy height metrics. Forestry, 2006, 79, 217-229.	2.3	140
31	Outlook for the Next Generation's Precision Forestry in Finland. Forests, 2014, 5, 1682-1694.	2.1	133
32	International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5011-5027.	6.3	129
33	Change Detection Techniques for Canopy Height Growth Measurements Using Airborne Laser Scanner Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 1339-1348.	0.6	120
34	Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors, 2013, 13, 1614-1634.	3.8	119
35	Backscattering properties of boreal forests at the C- and X-bands. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 1041-1050.	6.3	117
36	Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data. Sensors, 2011, 11, 5158-5182.	3.8	116

#	Article	IF	Citations
37	Tree mapping using airborne, terrestrial and mobile laser scanning $\hat{a} \in \text{``A case study in a heterogeneous}$ urban forest. Urban Forestry and Urban Greening, 2013, 12, 546-553.	5.3	106
38	The Use of a Mobile Laser Scanning System for Mapping Large Forest Plots. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 1504-1508.	3.1	105
39	Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123, 140-158.	11.1	105
40	Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 588-598.	6.3	104
41	Automatic Detection of Buildings and Changes in Buildings for Updating of Maps. Remote Sensing, 2010, 2, 1217-1248.	4.0	103
42	Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128, 298-313.	11.1	101
43	Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 369-379.	11.1	100
44	Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sensing, 2015, 7, 15933-15954.	4.0	100
45	An Integrated GNSS/INS/LiDAR-SLAM Positioning Method for Highly Accurate Forest Stem Mapping. Remote Sensing, 2017, 9, 3.	4.0	100
46	LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments. Sensors, 2015, 15, 16710-16728.	3.8	99
47	Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83, 104-115.	11.1	97
48	Study of Surface Brightness From Backscattered Laser Intensity: Calibration of Laser Data. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 255-259.	3.1	95
49	Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests, 2015, 6, 3218-3236.	2.1	95
50	Single-Sensor Solution to Tree Species Classiffation Using Multispectral Airborne Laser Scanning. Remote Sensing, 2017, 9, 108.	4.0	95
51	Comparison of Area-Based and Individual Tree-Based Methods for Predicting Plot-Level Forest Attributes. Remote Sensing, 2010, 2, 1481-1495.	4.0	94
52	Object Classification and Recognition From Mobile Laser Scanning Point Clouds in a Road Environment. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1226-1239.	6.3	93
53	Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR. Remote Sensing, 2013, 5, 2257-2274.	4.0	92
54	Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5117-5132.	6.3	90

#	Article	IF	Citations
55	Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors, 2014, 14, 1228-1248.	3.8	88
56	Laser scanning applications in fluvial studies. Progress in Physical Geography, 2011, 35, 782-809.	3.2	86
57	Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67, 73-79.	11.1	86
58	Fully-Automated Power Line Extraction from Airborne Laser Scanning Point Clouds in Forest Areas. Remote Sensing, 2014, 6, 11267-11282.	4.0	85
59	Autonomous Collection of Forest Field Referenceâ€"The Outlook and a First Step with UAV Laser Scanning. Remote Sensing, 2017, 9, 785.	4.0	85
60	The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sensing, 2014, 6, 6587-6603.	4.0	84
61	Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 41-60.	11.1	83
62	Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field. Sensors, 2012, 12, 12814-12835.	3.8	82
63	Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sensing of Environment, 2015, 158, 431-440.	11.0	80
64	Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. Forests, 2017, 8, 38.	2.1	80
65	In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143, 97-107.	11.1	78
66	Morphological changes on meander point bars associated with flow structure at different discharges. Earth Surface Processes and Landforms, 2013, 38, 577-590.	2.5	77
67	Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 246-262.	11.1	77
68	Toward Hyperspectral Lidar: Measurement of Spectral Backscatter Intensity With a Supercontinuum Laser Source. IEEE Geoscience and Remote Sensing Letters, 2007, 4, 211-215.	3.1	76
69	Mapping Topography Changes and Elevation Accuracies Using a Mobile Laser Scanner. Remote Sensing, 2011, 3, 587-600.	4.0	75
70	Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132, 199-209.	11.1	75
71	Land-cover classification using multitemporal ERS-1/2 insar data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1620-1628.	6.3	74
72	Brightness Measurements and Calibration With Airborne and Terrestrial Laser Scanners. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 528-534.	6.3	73

#	Article	IF	CITATIONS
73	Annual bank and point bar morphodynamics of a meandering river determined by highâ€accuracy multitemporal laser scanning and flow data. Water Resources Research, 2014, 50, 5532-5559.	4.2	72
74	SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR. Forests, 2015, 6, 4588-4606.	2.1	72
75	Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sensing Letters, 2013, 4, 344-353.	1.4	70
76	Comparison of Backpack, Handheld, Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sensing, 2020, 12, 3327.	4.0	70
77	The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies. Sensors, 2018, 18, 3228.	3.8	68
78	Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote Sensing of Environment, 2012, 117, 338-347.	11.0	63
79	Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sensing, 2018, 10, 338.	4.0	61
80	Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data. Remote Sensing of Environment, 2018, 216, 262-275.	11.0	60
81	Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 161-171.	11.1	59
82	Classification of Spruce and Pine Trees Using Active Hyperspectral LiDAR. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1138-1141.	3.1	58
83	The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D. Remote Sensing, 2014, 6, 3075-3100.	4.0	58
84	Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 167-178.	2.8	57
85	Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data. ISPRS International Journal of Geo-Information, 2012, 1, 242-255.	2.9	56
86	Uncertainty in timber assortment estimates predicted from forest inventory data. European Journal of Forest Research, 2010, 129, 1131-1142.	2.5	53
87	Photorealistic Building Reconstruction from Mobile Laser Scanning Data. Remote Sensing, 2011, 3, 1406-1426.	4.0	53
88	Feasibility of Google Tango and Kinect for Crowdsourcing Forestry Information. Forests, 2018, 9, 6.	2.1	53
89	In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest. Remote Sensing of Environment, 2019, 232, 111309.	11.0	53
90	Applicability of airborne profiling radar to forest inventory. Remote Sensing of Environment, 1996, 57, 39-57.	11.0	52

#	Article	IF	Citations
91	Classification of Defoliated Trees Using Tree-Level Airborne Laser Scanning Data Combined with Aerial Images. Remote Sensing, 2010, 2, 2665-2679.	4.0	51
92	The seasonal behavior of interferometric coherence in boreal forest. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 820-829.	6.3	50
93	Correcting Airborne Laser Scanning Intensity Data for Automatic Gain Control Effect. IEEE Geoscience and Remote Sensing Letters, 2010, 7, 511-514.	3.1	50
94	Geometric test field calibration of digital photogrammetric sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60, 387-399.	11.1	48
95	Small-footprint Laser Scanning Simulator for System Validation, Error Assessment, and Algorithm Development. Photogrammetric Engineering and Remote Sensing, 2009, 75, 1177-1189.	0.6	47
96	Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations. Remote Sensing, 2011, 3, 1614-1626.	4.0	47
97	A helicopter-borne eight-channel ranging scatterometer for remote sensing. I. System description. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 161-169.	6.3	46
98	Assessment of Low Density Full-Waveform Airborne Laser Scanning for Individual Tree Detection and Tree Species Classification. Forests, 2014, 5, 1011-1031.	2.1	46
99	NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications. Sensors, 2014, 14, 11805-11824.	3.8	46
100	Accuracy in estimation of timber assortments and stem distribution $\hat{a} \in ``A comparison of airborne and terrestrial laser scanning techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97, 89-97.$	11.1	46
101	Sub-bend scale flow–sediment interaction of meander bends — A combined approach of field observations, close-range remote sensing and computational modelling. Geomorphology, 2015, 238, 119-134.	2.6	46
102	A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter. Sensors, 2019, 19, 1620.	3.8	46
103	From TLS to VLS: Biomass Estimation at Individual Tree Level. Remote Sensing, 2010, 2, 1864-1879.	4.0	45
104	A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 2016, 46, 45-55.	2.8	45
105	A Permanent Test Field for Digital Photogrammetric Systems. Photogrammetric Engineering and Remote Sensing, 2008, 74, 95-106.	0.6	44
106	Single tree biomass modelling using airborne laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85, 66-73.	11.1	43
107	Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. International Journal of Applied Earth Observation and Geoinformation, 2017, 56, 13-23.	2.8	43
108	Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM. Sensors, 2015, 15, 5311-5330.	3.8	41

#	Article	IF	Citations
109	Characterizing 3D City Modeling Projects: Towards a Harmonized Interoperable System. ISPRS International Journal of Geo-Information, 2018, 7, 55.	2.9	41
110	Calibration of laser-derived tree height estimates by means of photogrammetric techniques. Scandinavian Journal of Forest Research, 2004, 19, 524-528.	1.4	40
111	Individual Tree Species Classification by Illuminated—Shaded Area Separation. Remote Sensing, 2010, 2, 19-35.	4.0	40
112	Laser Scanning in Forests. Remote Sensing, 2012, 4, 2919-2922.	4.0	40
113	Estimation of the Timber Quality of Scots Pine with Terrestrial Laser Scanning. Forests, 2014, 5, 1879-1895.	2.1	40
114	Twoâ€dimensional and threeâ€dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological Processes, 2015, 29, 1604-1629.	2.6	40
115	Mapping of urban roadside trees – A case study in the tree register update process in Helsinki City. Urban Forestry and Urban Greening, 2014, 13, 562-570.	5.3	38
116	TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1197-1204.	6.3	38
117	Feasibility Study of Ore Classification Using Active Hyperspectral LiDAR. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1785-1789.	3.1	38
118	Effects of stand size on the accuracy of remote sensing-based forest inventory. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 2613-2621.	6.3	37
119	Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification. Sensors, 2011, 11, 10586-10602.	3.8	37
120	Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. Journal of Geophysical Research: Space Physics, 2014, 119, 601-619.	2.4	37
121	Urban-Tree-Attribute Update Using Multisource Single-Tree Inventory. Forests, 2014, 5, 1032-1052.	2.1	35
122	Satellite microwave radiometry of forest and surface types in Finland. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26, 622-628.	6.3	34
123	A helicopter-borne eight-channel ranging scatterometer for remote sensing. II. Forest inventory. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 170-179.	6.3	34
124	Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System. Sensors, 2013, 13, 12497-12515.	3.8	34
125	Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sensing, 2016, 8, 1034.	4.0	34
126	Multisource Single-Tree Inventory in the Prediction of Tree Quality Variables and Logging Recoveries. Remote Sensing, 2014, 6, 3475-3491.	4.0	33

#	Article	IF	Citations
127	Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume. Canadian Journal of Forest Research, 2015, 45, 1524-1534.	1.7	33
128	Quantitative Assessment of Scots Pine (<i>Pinus Sylvestris</i> L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3598-3607.	4.9	33
129	Characterizing Seedling Stands Using Leaf-Off and Leaf-On Photogrammetric Point Clouds and Hyperspectral Imagery Acquired from Unmanned Aerial Vehicle. Forests, 2019, 10, 415.	2.1	33
130	Assessing the effects of thinning on stem growth allocation of individual Scots pine trees. Forest Ecology and Management, 2020, 474, 118344.	3.2	33
131	The potential of dual-wavelength terrestrial lidar in early detection of lps typographus (L.) infestation – Leaf water content as a proxy. Remote Sensing of Environment, 2019, 231, 111264.	11.0	32
132	Feasibility of Multispectral Airborne Laser Scanning Data for Road Mapping. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 294-298.	3.1	31
133	Variability of wood properties using airborne and terrestrial laser scanning. Remote Sensing of Environment, 2019, 235, 111474.	11.0	31
134	Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables. Remote Sensing, 2010, 2, 432-445.	4.0	30
135	Mobile laser scanning in fluvial geomorphology: mapping and change detection of point bars. Zeitschrift FÃ $\frac{1}{4}$ r Geomorphologie, 2011, 55, 31-50.	0.8	30
136	Measuring Leaf Water Content with Dual-Wavelength Intensity Data from Terrestrial Laser Scanners. Remote Sensing, 2017, 9, 8.	4.0	30
137	Evaluation of a Smartphone App for Forest Sample Plot Measurements. Forests, 2015, 6, 1179-1194.	2.1	29
138	An Algorithm for Automatic Road Asphalt Edge Delineation from Mobile Laser Scanner Data Using the Line Clouds Concept. Remote Sensing, 2016, 8, 740.	4.0	29
139	Semantic segmentation of road furniture in mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 98-113.	11.1	29
140	Area-Based Mapping of Defoliation of Scots Pine Stands Using Airborne Scanning LiDAR. Remote Sensing, 2013, 5, 1220-1234.	4.0	28
141	Gravel transport by ice in a subarctic river from accurate laser scanning. Geomorphology, 2015, 246, 113-122.	2.6	28
142	A Long-Term Terrestrial Laser Scanning Measurement Station to Continuously Monitor Structural and Phenological Dynamics of Boreal Forest Canopy. Frontiers in Plant Science, 2020, 11, 606752.	3.6	28
143	Intelligent Open Data 3D Maps in a Collaborative Virtual World. ISPRS International Journal of Geo-Information, 2015, 4, 837-857.	2.9	27
144	The effect of TLS point cloud sampling on tree detection and diameter measurement accuracy. Remote Sensing Letters, 2016, 7, 495-502.	1.4	27

#	Article	IF	CITATIONS
145	Investigating the Feasibility of Multi-Scan Terrestrial Laser Scanning to Characterize Tree Communities in Southern Boreal Forests. Remote Sensing, 2019, 11, 1423.	4.0	27
146	Radar-derived standwise forest inventory. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35, 392-404.	6.3	26
147	Comparison of measurement techniques and static theory applied to concrete beam deformation. Photogrammetric Record, 2009, 24, 351-371.	0.4	25
148	Tree Height Growth Measurement with Single-Scan Airborne, Static Terrestrial and Mobile Laser Scanning. Sensors, 2012, 12, 12798-12813.	3.8	25
149	Multiecho-Recording Mobile Laser Scanning for Enhancing Individual Tree Crown Reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 4323-4332.	6.3	25
150	A Liquid Crystal Tunable Filter-Based Hyperspectral LiDAR System and Its Application on Vegetation Red Edge Detection. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 291-295.	3.1	25
151	Agricultural Monitoring Using Envisat Alternating Polarization SAR Images. Photogrammetric Engineering and Remote Sensing, 2008, 74, 117-126.	0.6	24
152	Luminance-Corrected 3D Point Clouds for Road and Street Environments. Remote Sensing, 2015, 7, 11389-11402.	4.0	24
153	Effects of positional errors in model-assisted and model-based estimation of growing stock volume. Remote Sensing of Environment, 2016, 172, 101-108.	11.0	24
154	Forest stand age classification using time series of photogrammetrically derived digital surface models. Scandinavian Journal of Forest Research, 2016, 31, 194-205.	1.4	24
155	An overview of the laser ranging method of space laser altimeter. Infrared Physics and Technology, 2017, 86, 147-158.	2.9	24
156	Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds. Canadian Journal of Remote Sensing, 2018, 44, 462-475.	2.4	24
157	Can Leaf Water Content Be Estimated Using Multispectral Terrestrial Laser Scanning? A Case Study With Norway Spruce Seedlings. Frontiers in Plant Science, 2018, 9, 299.	3.6	24
158	Examining Changes in Stem Taper and Volume Growth with Two-Date 3D Point Clouds. Forests, 2019, 10, 382.	2.1	24
159	Power line mapping technique using all-terrain mobile laser scanning. Automation in Construction, 2019, 105, 102802.	9.8	24
160	Detecting and characterizing downed dead wood using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 76-90.	11.1	24
161	Predicting Forest Inventory Attributes Using Airborne Laser Scanning, Aerial Imagery, and Harvester Data. Remote Sensing, 2019, 11, 797.	4.0	24
162	A comparative study of the use of laser scanner data and field measurements in the prediction of crown height in boreal forests. Scandinavian Journal of Forest Research, 2006, 21, 231-238.	1.4	23

#	Article	IF	CITATIONS
163	Effect of tree-level airborne laser-scanning measurement accuracy on the timing and expected value of harvest decisions. European Journal of Forest Research, 2010, 129, 899-907.	2.5	23
164	A Comparison of Precise Leveling and Persistent Scatterer SAR Interferometry for Building Subsidence Rate Measurement. ISPRS International Journal of Geo-Information, 2013, 2, 797-816.	2.9	23
165	A 91-Channel Hyperspectral LiDAR for Coal/Rock Classification. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1052-1056.	3.1	23
166	Comparing features of single and multi-photon lidar in boreal forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 268-276.	11.1	23
167	Interactive dense point clouds in a game engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 375-389.	11.1	23
168	Helicopter-borne measurements of radar backscatter from forests. International Journal of Remote Sensing, 1990, 11, 1179-1191.	2.9	22
169	Three-level frame and RD-schematic algorithm for automatic detection of individual trees from MLS point clouds. International Journal of Remote Sensing, 2012, 33, 1701-1716.	2.9	22
170	Radiometric Calibration and Characterization of Large-format Digital Photogrammetric Sensors in a Test Field. Photogrammetric Engineering and Remote Sensing, 2008, 74, 1487-1500.	0.6	21
171	Prediction of Forest Stand Attributes Using TerraSAR-X Stereo Imagery. Remote Sensing, 2014, 6, 3227-3246.	4.0	21
172	Evaluating the Performance of High-Altitude Aerial Image-Based Digital Surface Models in Detecting Individual Tree Crowns in Mature Boreal Forests. Forests, 2016, 7, 143.	2.1	21
173	Determination of Exterior Orientation Using Linear Features from Vector Maps. Photogrammetric Record, 2006, 21, 329-341.	0.4	20
174	Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database. Remote Sensing, 2015, 7, 6710-6740.	4.0	20
175	Comparison of terrestrial laser scanning and X-ray scanning in measuring Scots pine (<i>Pinus) Tj ETQq1 1 0.7843</i>	314 rgBT / 1.4	Overlock 10 20
176	Study of a High Spectral Resolution Hyperspectral LiDAR in Vegetation Red Edge Parameters Extraction. Remote Sensing, 2019, 11, 2007.	4.0	20
177	Development of a UAV-MMS-Collaborative Aerial-to-Ground Remote Sensing System – A Preparatory Field Validation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1893-1898.	4.9	19
178	Classification of Needle Loss of Individual Scots Pine Trees by Means of Airborne Laser Scanning. Forests, 2013, 4, 386-403.	2.1	19
179	UAV-Borne Profiling Radar for Forest Research. Remote Sensing, 2017, 9, 58.	4.0	19
180	Topographical change caused by moderate and small floods in a gravel bed ephemeral river – a depth-averaged morphodynamic simulation approach. Earth Surface Dynamics, 2018, 6, 163-185.	2.4	18

#	Article	IF	CITATIONS
181	Automated Multi-Sensor 3D Reconstruction for the Web. ISPRS International Journal of Geo-Information, 2019, 8, 221.	2.9	18
182	Seamless integration of above- and under-canopy unmanned aerial vehicle laser scanning for forest investigation. Forest Ecosystems, $2021,8,.$	3.1	18
183	Review on Active and Passive Remote Sensing Techniques for Road Extraction. Remote Sensing, 2021, 13, 4235.	4.0	18
184	Cereal Yield Modeling in Finland Using Optical and Radar Remote Sensing. Remote Sensing, 2010, 2, 2185-2239.	4.0	17
185	Extrinsic Calibration of 2D Laser Rangefinders Based on a Mobile Sphere. Remote Sensing, 2018, 10, 1176.	4.0	17
186	Multisource Point Clouds, Point Simplification and Surface Reconstruction. Remote Sensing, 2019, 11, 2659.	4.0	17
187	Multisensorial Close-Range Sensing Generates Benefits for Characterization of Managed Scots Pine (Pinus sylvestris L.) Stands. ISPRS International Journal of Geo-Information, 2020, 9, 309.	2.9	17
188	Feasibility Study on Hyperspectral LiDAR for Ancient Huizhou-Style Architecture Preservation. Remote Sensing, 2020, 12, 88.	4.0	17
189	Airborne Laser Scanning. , 0, , 199-211.		17
190	Comparison Between First Pulse and Last Pulse Laser Scanner Data in the Automatic Detection of Buildings. Photogrammetric Engineering and Remote Sensing, 2009, 75, 133-146.	0.6	16
191	Sparse Density, Leaf-Off Airborne Laser Scanning Data in Aboveground Biomass Component Prediction. Forests, 2015, 6, 1839-1857.	2.1	16
192	Performance of terrestrial laser scanning to characterize managed Scots pine (Pinus sylvestris L.) stands is dependent on forest structural variation. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 277-287.	11.1	16
193	Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning. Remote Sensing, 2020, 12, 2672.	4.0	16
194	Near Real-Time Semantic View Analysis of 3D City Models in Web Browser. ISPRS International Journal of Geo-Information, 2021, 10, 138.	2.9	16
195	Combining single photon and multispectral airborne laser scanning for land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 200-216.	11,1	16
196	Map updating and change detection using vehicle-based laser scanning., 2009,,.		15
197	Depth camera indoor mapping for 3D virtual radio play. Photogrammetric Record, 2018, 33, 171-195.	0.4	15
198	Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in estimation accuracy. International Journal of Remote Sensing, 2018, 39, 8766-8783.	2.9	15

#	Article	IF	CITATIONS
199	Assessing spectral measures of post-harvest forest recovery with field plot data. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 102-114.	2.8	15
200	Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry, 2019, 92, 177-187.	2.3	15
201	Analyzing the Angle Effect of Leaf Reflectance Measured by Indoor Hyperspectral Light Detection and Ranging (LiDAR). Remote Sensing, 2020, 12, 919.	4.0	15
202	Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 3, 100010.	3.1	15
203	Multispectral Imagery Provides Benefits for Mapping Spruce Tree Decline Due to Bark Beetle Infestation When Acquired Late in the Season. Remote Sensing, 2022, 14, 909.	4.0	15
204	Nationwide Point Cloudâ€"The Future Topographic Core Data. ISPRS International Journal of Geo-Information, 2017, 6, 243.	2.9	14
205	TanDEM-X digital surface models in boreal forest above-ground biomass change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148, 174-183.	11.1	14
206	Evaluating the Quality of TLS Point Cloud Colorization. Remote Sensing, 2020, 12, 2748.	4.0	14
207	The use of ALS, TLS and VLS measurements in mapping and monitoring urban trees. , 2011, , .		13
208	Performance Analysis of Mobile Laser Scanning Systems in Target Representation. Remote Sensing, 2013, 5, 3140-3155.	4.0	13
209	A LiDAR-based single-shot global localization solution using a cross-section shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189, 272-288.	11.1	13
210	Integrating Vegetation Indices Models and Phenological Classification with Composite SAR and Optical Data for Cereal Yield Estimation in Finland (Part I). Remote Sensing, 2010, 2, 76-114.	4.0	12
211	\$k\$-Segments-Based Geometric Modeling of VLS Scan Lines. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 93-97.	3.1	12
212	Predicting stand-thinning maturity from airborne laser scanning data. Scandinavian Journal of Forest Research, 2011, 26, 187-196.	1.4	12
213	Using multi-source data to map and model the predisposition of forests to wind disturbance. Scandinavian Journal of Forest Research, 2016, 31, 66-79.	1.4	12
214	A Novel GNSS Technique for Predicting Boreal Forest Attributes at Low Cost. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4855-4867.	6.3	12
215	Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference. Sensors, 2018, 18, 4371.	3.8	12
216	Feasibility of Mobile Laser Scanning towards Operational Accurate Road Rut Depth Measurements. Sensors, 2021, 21, 1180.	3.8	12

#	Article	IF	Citations
217	Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks. Sensors, 2009, 9, 6008-6027.	3.8	11
218	Rapid Prototyping â€" A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning. ISPRS International Journal of Geo-Information, 2014, 3, 871-890.	2.9	11
219	Assessing the Effects of Sample Size on Parametrizing a Taper Curve Equation and the Resultant Stem-Volume Estimates. Forests, 2019, 10, 848.	2.1	11
220	Mapping Built-up Areas from Multitemporal Interferometric SAR Images - A Segment-based Approach. Photogrammetric Engineering and Remote Sensing, 2006, 72, 701-714.	0.6	10
221	Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning. Sensors, 2013, 13, 8140-8154.	3.8	10
222	Long-Term Prediction of the Arctic Ionospheric TEC Based on Time-Varying Periodograms. PLoS ONE, 2014, 9, e111497.	2.5	10
223	<scp>Arctic Mackenzie Delta</scp> channel planform evolution during 1983–2013 utilising <scp>Landsat</scp> data and hydrological time series. Hydrological Processes, 2017, 31, 3979-3995.	2.6	10
224	GPS Time Series Analysis from Aboa the Finnish Antarctic Research Station. Remote Sensing, 2018, 10, 1937.	4.0	10
225	A Novel Calibration Method between a Camera and a 3D LiDAR with Infrared Images. , 2020, , .		10
226	Landsat archive holdings for Finland: opportunities for forest monitoring. Silva Fennica, 2018, 52, .	1.3	10
227	3D city model for mobile phone using MMS data. , 2009, , .		9
228	The uses of ambient light for ubiquitous positioning. , 2014, , .		9
229	Validation of Mobile Laser Scanning for Understory Tree Characterization in Urban Forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3167-3173.	4.9	9
230	Can global navigation satellite system signals reveal the ecological attributes of forests?. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 74-79.	2.8	9
231	Estimating Ground Level and Canopy Top Elevation With Airborne Microwave Profiling Radar. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2283-2294.	6.3	9
232	A practical method utilizing multi-spectral LiDAR to aid points cloud matching in SLAM. Satellite Navigation, 2020, 1 , .	8.6	9
233	Using Leaf-Off and Leaf-On Multispectral Airborne Laser Scanning Data to Characterize Seedling Stands. Remote Sensing, 2020, 12, 3328.	4.0	9
234	Revealing Changes in the Stem Form and Volume Allocation in Diverse Boreal Forests Using Two-Date Terrestrial Laser Scanning. Forests, 2021, 12, 835.	2.1	9

#	Article	IF	Citations
235	Under-Canopy UAV Laser Scanning Providing Canopy Height and Stem Volume Accurately. Forests, 2021, 12, 856.	2.1	9
236	MULTISPECTRAL AIRBORNE LASER SCANNING FOR AUTOMATED MAP UPDATING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B3, 323-330.	0.2	9
237	Semantic segmentation of point cloud data using raw laser scanner measurements and deep neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 3, 100011.	3.1	9
238	Calibration accuracy of the HUTSCAT airborne scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 1450-1454.	6.3	8
239	Forest Inventory Using Small-Footprint Airborne LiDAR. , 2008, , 335-370.		8
240	Characterization of mobile LiDAR data collected with multiple echoes per pulse from crowns during foliation. Scandinavian Journal of Forest Research, 2012, 27, 298-311.	1.4	8
241	Measurement of Snow Depth Using a Low-Cost Mobile Laser Scanner. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 587-591.	3.1	8
242	Temporal and spatial variations of global ionospheric total electron content under various solar conditions. Journal of Geodesy, 2017, 91, 485-502.	3.6	8
243	Outlook for the Single-Tree-Level Forest Inventory in Nordic Countries. Lecture Notes in Geoinformation and Cartography, 2017, , 183-195.	1.0	8
244	Analysis and Radiometric Calibration for Backscatter Intensity of Hyperspectral LiDAR Caused by Incident Angle Effect. Sensors, 2021, 21, 2960.	3.8	8
245	Toward utilizing multitemporal multispectral airborne laser scanning, Sentinel-2, and mobile laser scanning in map updating. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	8
246	Camera preparation and performance for 3D luminance mapping of road environments. The Photogrammetric Journal of Finland, 2017, 25, 1-23.	0.5	8
247	A heterogeneous 3D map-based place recognition solution using virtual LiDAR and a polar grid height coding image descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 1-18.	11.1	8
248	Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system. Science of Remote Sensing, 2022, 5, 100050.	4.8	8
249	Transmittance of Airborne Laser Scanning Pulses for Boreal Forest Elevation Modeling. Remote Sensing, 2011, 3, 1365-1379.	4.0	7
250	Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner. Sensors, 2013, 13, 9305-9320.	3.8	7
251	Knowledge-based indoor positioning based on LiDAR aided multiple sensors system for UGVs. , 2014, , .		7
252	Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution. Micromachines, 2015, 6, 699-717.	2.9	7

#	Article	IF	CITATIONS
253	The effect of seasonal variation on automated land cover mapping from multispectral airborne laser scanning data. International Journal of Remote Sensing, 2019, 40, 3289-3307.	2.9	7
254	Multimodal End-to-End Learning for Autonomous Steering in Adverse Road and Weather Conditions. , 2021, , .		7
255	Mobile mapping of night-time road environment lighting conditions. The Photogrammetric Journal of Finland, 2018, 26, 1-17.	0.5	7
256	MULTISPECTRAL AIRBORNE LASER SCANNING FOR AUTOMATED MAP UPDATING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B3, 323-330.	0.2	7
257	Efficient coarse registration method using translation- and rotation-invariant local descriptors towards fully automated forest inventory. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2021, 2, 100007.	3.1	7
258	SAR Coherence Tomography for Boreal Forest with Aid of Laser Measurements. , 2008, , .		6
259	Combining mobile and static terrestrial laser scanners to investigate individual crown attributes during foliation. Canadian Journal of Remote Sensing, 2011, 37, 359-375.	2.4	6
260	A Hyperspectral LiDAR with Eight Channels Covering from VIS to SWIR., 2018,,.		6
261	Effects of Stem Density on Crown Architecture of Scots Pine Trees. Frontiers in Plant Science, 2022, 13, 817792.	3.6	6
262	Preliminary verification of hyperspectral LiDAR covering VIS-NIR-SWIR used for objects classification. European Journal of Remote Sensing, 2022, 55, 291-303.	3. 5	6
263	Range calibration of airborne profiling radar used in forest inventory. , 2016, , .		5
264	Scan matching technology for forest navigation with map information. , 2016, , .		5
265	Possibility of Applying SLAM-Aided LiDAR in Deep Space Exploration. Springer Proceedings in Physics, 2017, , 239-248.	0.2	5
266	Feasibility Study of Using Mobile Laser Scanning Point Cloud Data for GNSS Line of Sight Analysis. Mobile Information Systems, 2017, 2017, 1-11.	0.6	5
267	The Comparison of Canopy Height Profiles Extracted from Ku-band Profile Radar Waveforms and LiDAR Data. Remote Sensing, 2018, 10, 701.	4.0	5
268	Effect of canopy structure on the performance of tree mapping methods in urban parks. Urban Forestry and Urban Greening, 2019, 44, 126441.	5 . 3	5
269	Browser based 3D for the built environment. Nordic Journal of Surveying and Real Estate Research, 2018, 13, 54-76.	0.5	5
270	Use of HRSC-A for sampling bidirectional reflectance. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59, 323-341.	11.1	4

#	Article	IF	Citations
271	Improving Automation in Map Updating Based on National Laser Scanning, Classification Trees, Object-Based Change Detection and 3D Object Reconstruction. , 2007, , .		4
272	Nationwide Digital Terrain Models for Topographic Depression Modelling in Detection of Flood Detention Areas. Water (Switzerland), 2014, 6, 271-300.	2.7	4
273	An Analysis of Ku-Band Profiling Radar Observations of Boreal Forest. Remote Sensing, 2017, 9, 1252.	4.0	4
274	Estimation of Canopy Height Using an Airborne <i>Ku</i> -Band Frequency-Modulated Continuous Waveform Profiling Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3590-3597.	4.9	4
275	Characterizing ecosystem phenological diversity and its macroecology with snow cover phenology. Scientific Reports, 2019, 9, 15074.	3.3	4
276	Preregistration Classification of Mobile LIDAR Data Using Spatial Correlations. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6900-6915.	6.3	4
277	Simulation of Ku-Band Profile Radar Waveform by Extending Radiosity Applicable to Porous Individual Objects (RAPID2) Model. Remote Sensing, 2020, 12, 684.	4.0	4
278	Relative orientation between a single frame image and LIDAR point cloud using linear features. The Photogrammetric Journal of Finland, 2013, 23, 1-16.	0.5	4
279	Calibration of laser scanning intensity data using brightness targets. The method developed by the Finnish Geodetic Institute. Geodesy and Cartography, 2009, 35, 77-81.	0.5	3
280	Geometrically modeling 2D scattered points: a review of the potential for methodologically improving mobile laser scanning in data processing. International Journal of Digital Earth, 2014, 7, 432-449.	3.9	3
281	Mobile laser scanning based 3D technology for mineral environment modeling and positioning. , 2016, ,		3
282	SLAM Based Indoor Mapping Comparison:Mobile or Terrestrial ?., 2018,,.		3
283	Airborne Wind Vector Scatterometer for Sea Surface Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2470-2476.	4.9	3
284	Lidar-aided analysis of boreal forest backscatter at Ku band. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102133.	2.8	3
285	Interest point detection from multiâ€beam light detection and ranging point cloud using unsupervised convolutional neural network. IET Image Processing, 2021, 15, 369-377.	2.5	3
286	< title>Unsupervised land-cover classification using multitemporal ERS-1/2 tandem INSAR data $<$ /title>. , 2002, , .		2
287	Pulsewidth coding approach for multi-sensor synchronization of urban mobile mapping system. , 2009, , .		2
288	Boreal forest height estimation with SAR interferometry and laser measurements. , 2009, , .		2

#	Article	IF	Citations
289	An approach of 3D model simplification for mobile phone based navigation application. , 2010, , .		2
290	Automatic extraction of parallel edges based on eigenvalue analysis and collateral expansion. International Journal of Remote Sensing, 2012, 33, 382-395.	2.9	2
291	SAR radargrammetry and scanning LiDAR in predicting forest canopy height. , 2012, , .		2
292	Development of a contextual thinking engine in mobile devices. , 2014, , .		2
293	Errors in the Short-Term Forest Resource Information Update. Lecture Notes in Geoinformation and Cartography, 2017, , 155-166.	1.0	2
294	Automated large scale indoor reconstruction using vehicle survey data., 2018,,.		2
295	Improving distribution models of riparian vegetation with mobile laser scanning and hydraulic modelling. PLoS ONE, 2019, 14, e0225936.	2.5	2
296	A practical method for employing multi-spectral LiDAR intensities in points cloud classification. International Journal of Remote Sensing, 2020, 41, 8366-8379.	2.9	2
297	Utilizing a Terrestrial Laser Scanner for 3D Luminance Measurement of Indoor Environments. Journal of Imaging, 2021, 7, 85.	3.0	2
298	Hyperspectral LiDAR-Based Plant Spectral Profiles Acquisition: Performance Assessment and Results Analysis. Remote Sensing, 2021, 13, 2521.	4.0	2
299	Using Microwave Profile Radar to Estimate Forest Canopy Leaf Area Index: Linking 3D Radiative Transfer Model and Forest Gap Model. Remote Sensing, 2021, 13, 297.	4.0	2
300	3D City Modeling and Visualization for Smart Phone Applications. , 2013, , 1011-1052.		2
301	Assessing the Dependencies of Scots Pine (Pinus sylvestris L.) Structural Characteristics and Internal Wood Property Variation. Forests, 2022, 13, 397.	2.1	2
302	Accuracy of High-Resolution Radar Images in the Estimation of Plot-Level Forest Variables. Lecture Notes in Geoinformation and Cartography, 2009, , 67-82.	1.0	1
303	Extrinsic Calibration of 2D Laser Rangefinders Using Indoor Geometric Constraints. , 2018, , .		1
304	The Determination of Effective Beamwidth of Ku Band Profiling Radar Based on Waveform Matching Method in the Boreal Forest of Finland. Remote Sensing, 2020, 12, 2710.	4.0	1
305	An Investigation of Spectral Band Selection for Hyperspectral LiDAR Technique. Electronics (Switzerland), 2020, 9, 148.	3.1	1
306	Performance Assessment of Reference Modelling Methods for Defect Evaluation in Asphalt Concrete. Sensors, 2021, 21, 8190.	3.8	1

#	Article	IF	CITATIONS
307	Evaluation of laser scanner data in forest areas. , 1999, , .		0
308	Leaf area index (LAI) estimation based on vehicle-based laser scanning. , 2010, , .		0
309	Fusion of geometric models from VLS overlapping profiles. , 2010, , .		0
310	Fine-scale 3D biotope mapping using ultra high resolution airborne photography and mobile laser scanning. , 2013, , .		0
311	Allocating tree crown pruning with ALS-data - A case study in the city of Helsinki. , 2015, , .		O
312	Fully Polarimetric Airborne Wind Vector Scatterometer to Support Space-Borne Gnss-R Measurements. , 2018, , .		0
313	The Penetration Analysis of Airborne Ku-Band Radar Versus Satellite Infrared Lidar Based on the Height and Energy Percentiles in the Boreal Forest. Remote Sensing, 2021, 13, 1650.	4.0	O
314	3D City Modeling and Visualization for Smart Phone Applications. , 0, , 254-296.		0
315	Forest Data to Insights and Experiences Using Gamification. Frontiers in Forests and Global Change, 2022, 5, .	2.3	O
316	Leveraging Road Area Semantic Segmentation withÂAuxiliary Steering Task. Lecture Notes in Computer Science, 2022, , 727-738.	1.3	0