Marek Kowalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1722455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE <i>z</i> > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE. Astrophysical Journal, 2012, 746, 85.	1.6	1,382
2	Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophysical Journal, 2008, 686, 749-778.	1.6	1,217
3	SPECTRA AND <i>HUBBLE SPACE TELESCOPE</i> LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < <i>z</i> < 1.12 AND THE UNION2 COMPILATION. Astrophysical Journal, 2010, 716, 712-738.	1.6	1,143
4	Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 2013, 342, 1242856.	6.0	1,048
5	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	1.0	1,020
6	Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 2014, 113, 101101.	2.9	873
7	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	6.0	654
8	Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361, 147-151.	6.0	601
9	First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 2013, 111, 021103.	2.9	578
10	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
11	The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 2017, 12, P03012-P03012.	0.5	390
12	Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astroparticle Physics, 2004, 20, 507-532.	1.9	341
13	A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. Astrophysical Journal, 2015, 809, 98.	1.6	337
14	OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. Astrophysical Journal, 2016, 833, 3.	1.6	336
15	The IceCube data acquisition system: Signal capture, digitization, and timestamping. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 294-316.	0.7	312
16	Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Physical Review Letters, 2015, 115, 081102.	2.9	247
17	Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector. Physical Review Letters, 2013, 110, 131302.	2.9	235
18	The design and performance of IceCube DeepCore. Astroparticle Physics, 2012, 35, 615-624.	1.9	222

#	Article	IF	CITATIONS
19	Time-Integrated Neutrino Source Searches with 10ÂYears of IceCube Data. Physical Review Letters, 2020, 124, 051103.	2.9	221
20	Calibration and characterization of the IceCube photomultiplier tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 618, 139-152.	0.7	211
21	Atmospheric and astrophysical neutrinos above 1ÂTeV interacting in IceCube. Physical Review D, 2015, 91,	1.6	209
22	lceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 060501.	1.4	204
23	All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophysical Journal, 2017, 835, 151.	1.6	198
24	THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX. Astrophysical Journal, 2017, 835, 45.	1.6	186
25	Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory. Astronomy and Astrophysics, 2013, 554, A27.	2.1	178
26	CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE. Astrophysical Journal Letters, 2012, 750, L19.	3.0	175
27	Muon track reconstruction and data selection techniques in AMANDA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 524, 169-194.	0.7	171
28	Energy reconstruction methods in the IceCube neutrino telescope. Journal of Instrumentation, 2014, 9, P03009-P03009.	0.5	171
29	CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT. Astrophysical Journal, 2015, 802, 20.	1.6	171
30	lceTop: The surface component of IceCube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 700, 188-220.	0.7	166
31	Measurement of the atmospheric neutrino energy spectrum from 100ÂGeV to 400ÂTeV with IceCube. Physical Review D, 2011, 83, .	1.6	156
32	Flavor Ratio of Astrophysical Neutrinos above 35ÂTeV in IceCube. Physical Review Letters, 2015, 114, 171102.	2.9	156
33	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>α</i> . Astronomy and Astrophysics, 2013, 560, A66.	2.1	151
34	Optical properties of deep glacial ice at the South Pole. Journal of Geophysical Research, 2006, 111, .	3.3	149
35	SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA. Astrophysical Journal, 2014, 796, 109.	1.6	149
36	Observation of high-energy neutrinos using ÄŒerenkov detectors embedded deep in Antarctic ice. Nature, 2001. 410. 441-443.	13.7	148

#	Article	IF	CITATIONS
37	IceCube high-energy starting event sample: Description and flux characterization with 7.5Âyears of data. Physical Review D, 2021, 104, .	1.6	142
38	Searches for Sterile Neutrinos with the IceCube Detector. Physical Review Letters, 2016, 117, 071801.	2.9	140
39	Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 2020, 125, 121104.	2.9	137
40	A tidal disruption event coincident with a high-energy neutrino. Nature Astronomy, 2021, 5, 510-518.	4.2	136
41	Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector. Physical Review Letters, 2009, 102, 201302.	2.9	132
42	Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Physical Review D, 2018, 98, .	1.6	131
43	TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR. Astrophysical Journal, 2011, 732, 18.	1.6	126
44	SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE. Astrophysical Journal Letters, 2015, 805, L5.	3.0	124
45	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 108.	1.6	123
46	Measurement of South Pole ice transparency with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 73-89.	0.7	122
47	IceCube sensitivity for low-energy neutrinos from nearby supernovae. Astronomy and Astrophysics, 2011, 535, A109.	2.1	121
48	MEASUREMENT OF THE ANISOTROPY OF COSMIC-RAY ARRIVAL DIRECTIONS WITH ICECUBE. Astrophysical Journal Letters, 2010, 718, L194-L198.	3.0	119
49	The IceCube realtime alert system. Astroparticle Physics, 2017, 92, 30-41.	1.9	116
50	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophysical Journal, 2017, 843, 112.	1.6	116
51	OBSERVATION OF ANISOTROPY IN THE GALACTIC COSMIC-RAY ARRIVAL DIRECTIONS AT 400 TeV WITH ICECUBE. Astrophysical Journal, 2012, 746, 33.	1.6	115
52	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10ÂPeV with IceCube. Physical Review Letters, 2016, 117, 241101.	2.9	111
53	Search for annihilating dark matter in the Sun with 3Âyears of IceCube data. European Physical Journal C, 2017, 77, 1.	1.4	111
54	The reddening law of type la supernovae: separating intrinsic variability from dust using equivalent widths. Astronomy and Astrophysics, 2011, 529, L4.	2.1	110

#	Article	IF	CITATIONS
55	DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2009, 690, 1358-1362.	1.6	109
56	AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY. Astrophysical Journal, 2016, 824, 115.	1.6	109
57	Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1498-1518.	1.6	105
58	The Type Ia Supernova Rate atz â‰^ 0.5 from the Supernova Legacy Survey. Astronomical Journal, 2006, 1126-1145.	132, 1.9	97
59	Strong dependence of Type Ia supernova standardization on the local specific star formation rate. Astronomy and Astrophysics, 2020, 644, A176.	2.1	96
60	Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. Astrophysical Journal, 2017, 849, 67.	1.6	95
61	Black holes at neutrino telescopes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 529, 1-9.	1.5	94
62	lceCube sensitivity for low-energy neutrinos from nearby supernovae (<i>Corrigendum</i>). Astronomy and Astrophysics, 2014, 563, C1.	2.1	94
63	Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II. Physical Review D, 2007, 76, .	1.6	92
64	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector. Physical Review D, 2011, 84, .	1.6	87
65	Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 2015, 91, .	1.6	86
66	Detection of a particle shower at the Glashow resonance with IceCube. Nature, 2021, 591, 220-224.	13.7	86
67	Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector. Physical Review Letters, 2011, 106, 141101.	2.9	85
68	Atmospheric extinction properties above Mauna Kea from the Nearby SuperNova Factory spectro-photometric data set. Astronomy and Astrophysics, 2013, 549, A8.	2.1	85
69	ANIS: High energy neutrino generator for neutrino telescopes. Computer Physics Communications, 2005, 172, 203-213.	3.0	82
70	SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. Astrophysical Journal, 2010, 710, 346-359.	1.6	81
71	SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA. Astrophysical Journal, 2013, 779, 132.	1.6	81
72	Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory. Astronomy and Astrophysics, 2013, 560, A90.	2.1	80

#	Article	IF	CITATIONS
73	Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope. Physical Review D, 2011, 84, .	1.6	79
74	TYPE la SUPERNOVA CARBON FOOTPRINTS. Astrophysical Journal, 2011, 743, 27.	1.6	78
75	lceCube — the next generation neutrino telescope at the South Pole. Nuclear Physics, Section B, Proceedings Supplements, 2003, 118, 388-395.	0.5	77
76	Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array. Physical Review D, 2002, 66, .	1.6	76
77	Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Physical Review D, 2010, 82, .	1.6	76
78	Search for sterile neutrino mixing using three years of IceCube DeepCore data. Physical Review D, 2017, 95, .	1.6	75
79	Search for Ultra–Highâ€Energy Neutrinos with AMANDAâ€II. Astrophysical Journal, 2008, 675, 1014-1024.	1.6	74
80	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration. Physical Review D, 2014, 89, .	1.6	74
81	ANISOTROPY IN COSMIC-RAY ARRIVAL DIRECTIONS IN THE SOUTHERN HEMISPHERE BASED ON SIX YEARS OF DATA FROM THE ICECUBE DETECTOR. Astrophysical Journal, 2016, 826, 220.	1.6	72
82	Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II. Physical Review D, 2009, 79, .	1.6	71
83	Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data. Physical Review D, 2011, 83, .	1.6	68
84	Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophysical Journal, 2022, 928, 50.	1.6	67
85	Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors. Physical Review D, 2012, 85, .	1.6	66
86	Search for Extraterrestrial Point Sources of Neutrinos with AMANDA-II. Physical Review Letters, 2004, 92, 071102.	2.9	65
87	Limits on Diffuse Fluxes of High Energy Extraterrestrial Neutrinos with the AMANDA-B10 Detector. Physical Review Letters, 2003, 90, 251101.	2.9	64
88	A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET. Astrophysical Journal, 2012, 757, 12.	1.6	64
89	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Flux in IceCube. Physical Review Letters, 2013, 110, 151105.	2.9	64
90	Results from the Antarctic Muon and Neutrino Detector Array. Nuclear Physics, Section B, Proceedings Supplements, 2003, 118, 371-379.	0.5	63

#	Article	IF	CITATIONS
91	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 107.	1.6	63
92	Search for neutrino-induced cascades with AMANDA. Astroparticle Physics, 2004, 22, 127-138.	1.9	62
93	Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. European Physical Journal C, 2017, 77, 1.	1.4	62
94	Search for neutrinos from decaying dark matter with IceCube. European Physical Journal C, 2018, 78, 831.	1.4	62
95	Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astronomy and Astrophysics, 2019, 631, A147.	2.1	62
96	Flux limits on ultra high energy neutrinos with AMANDA-B10. Astroparticle Physics, 2005, 22, 339-353.	1.9	60
97	AN INTENSIVE <i>HUBBLE SPACE TELESCOPE</i> SURVEY FOR <i>z</i> >1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS. Astronomical Journal, 2009, 138, 1271-1283.	1.9	60
98	Search for supernova neutrino bursts with the AMANDA detector. Astroparticle Physics, 2002, 16, 345-359.	1.9	59
99	A New Determination of the Highâ€Redshift Type Ia Supernova Rates with the <i>Hubble Space Telescope </i> Advanced Camera for Surveys. Astrophysical Journal, 2008, 673, 981-998.	1.6	58
100	Measurement of Ωm, Ωĥfrom a Blind Analysis of Type Ia Supernovae with CMAGIC: Using Color Information to Verify the Acceleration of the Universe. Astrophysical Journal, 2006, 644, 1-20.	1.6	57
101	Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Physical Review D, 2007, 76, .	1.6	57
102	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Physical Review Letters, 2020, 125, 141801.	2.9	57
103	SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012. Astrophysical Journal, 2015, 807, 46.	1.6	56
104	Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 022-022.	1.9	56
105	Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Physical Review D, 2019, 99, .	1.6	55
106	IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters. Physical Review D, 2013, 88, .	1.6	53
107	Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophysical Journal, 2019, 886, 12.	1.6	53
108	Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Physical Review D, 2007, 75, .	1.6	52

#	Article	IF	CITATIONS
109	Search for dark matter annihilation in the Galactic Center with IceCube-79. European Physical Journal C, 2015, 75, 1.	1.4	52
110	Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector. Astroparticle Physics, 2006, 24, 459-466.	1.9	51
111	Characterization of the atmospheric muon flux in IceCube. Astroparticle Physics, 2016, 78, 1-27.	1.9	51
112	Spectra of High-Redshift Type Ia Supernovae and a Comparison with Their Low-Redshift Counterparts. Astronomical Journal, 2005, 130, 2788-2803.	1.9	49
113	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	1.6	49
114	Quantitative comparison between type Ia supernova spectra at low and high redshifts: a case study. Astronomy and Astrophysics, 2007, 470, 411-424.	2.1	49
115	Nonlinear Declineâ€Rate Dependence and Intrinsic Variation of Type Ia Supernova Luminosities. Astrophysical Journal, 2006, 641, 50-69.	1.6	48
116	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>î½</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Spectrum with IceCube. Physical Review D, 2015, 91, .	1.6	48
117	Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory. Physical Review D, 2013, 88, .	1.6	47
118	IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE. Astrophysical Journal, 2015, 815, 58.	1.6	47
119	Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector. Physical Review D, 2002, 66, .	1.6	46
120	LOOKING BEYOND LAMBDA WITH THE UNION SUPERNOVA COMPILATION. Astrophysical Journal, 2009, 695, 391-403.	1.6	46
121	Detecting neutrino transients with optical follow-up observations. Astroparticle Physics, 2007, 27, 533-538.	1.9	45
122	PINGU: a vision for neutrino and particle physics at the South Pole. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 054006.	1.4	45
123	Search for point sources of high energy neutrinos with final data from AMANDA-II. Physical Review D, 2009, 79, .	1.6	44
124	Search for astrophysical tau neutrinos in three years of IceCube data. Physical Review D, 2016, 93, .	1.6	44
125	The Search for Muon Neutrinos from Northern Hemisphere Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2008, 674, 357-370.	1.6	43
126	FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR. Astrophysical Journal, 2009, 701, L47-L51.	1.6	43

#	Article	IF	CITATIONS
127	Astrophysical neutrinos flavored with beyond the Standard Model physics. Physical Review D, 2017, 96,	1.6	43
128	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	2.9	41
129	Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. Astronomy and Astrophysics, 2012, 539, A60.	2.1	40
130	STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION. Astrophysical Journal, 2013, 766, 84.	1.6	40
131	Patterns in the Multiwavelength Behavior of Candidate Neutrino Blazars. Astrophysical Journal, 2020, 893, 162.	1.6	40
132	Spectroscopic Observations and Analysis of the Unusual Type Ia SN 1999ac. Astronomical Journal, 2005, 130, 2278-2292.	1.9	39
133	PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2013, 763, 35.	1.6	39
134	Search for non-relativistic magnetic monopoles with IceCube. European Physical Journal C, 2014, 74, 1.	1.4	39
135	THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS. Astrophysical Journal, 2015, 811, 52.	1.6	39
136	Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in $2000\hat{a}\in 2002$. Physical Review D, 2005, 71, .	1.6	38
137	Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube. European Physical Journal C, 2015, 75, 116.	1.4	38
138	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS. Astrophysical Journal, 2012, 745, 32.	1.6	37
139	TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. Astrophysical Journal, 2012, 744, 1.	1.6	37
140	All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore. European Physical Journal C, 2016, 76, 1.	1.4	37
141	SNEMO: Improved Empirical Models for Type Ia Supernovae. Astrophysical Journal, 2018, 869, 167.	1.6	37
142	Search for neutrino-induced cascades with the AMANDA detector. Physical Review D, 2003, 67, .	1.6	36
143	Search for Point Sources of Highâ€Energy Neutrinos with AMANDA. Astrophysical Journal, 2003, 583, 1040-1057.	1.6	36
144	Extending the Search for Neutrino Point Sources with IceCube above the Horizon. Physical Review Letters, 2009, 103, 221102.	2.9	36

#	Article	IF	CITATIONS
145	An improved method for measuring muon energy using the truncated mean of dE/dx. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 703, 190-198.	0.7	36
146	First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector. Physical Review D, 2011, 84, .	1.6	34
147	Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube. Astroparticle Physics, 2013, 42, 15-32.	1.9	34
148	Observation of the cosmic-ray shadow of the Moon with IceCube. Physical Review D, 2014, 89, .	1.6	34
149	Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data. Astroparticle Physics, 2015, 66, 39-52.	1.9	34
150	Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. Physical Review D, 2020, 102, .	1.6	34
151	Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astronomy and Astrophysics, 2017, 607, A115.	2.1	33
152	Search for Neutrinoâ€induced Cascades from Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2007, 664, 397-410.	1.6	32
153	Eddington bias for cosmic neutrino sources. Astronomy and Astrophysics, 2019, 622, L9.	2.1	31
154	Status and perspectives of neutrino physics. Progress in Particle and Nuclear Physics, 2022, 124, 103947.	5.6	31
155	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
156	Searches for relativistic magnetic monopoles in IceCube. European Physical Journal C, 2016, 76, 1.	1.4	29
157	Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors. Astroparticle Physics, 2004, 21, 565-581.	1.9	28
158	First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory. Physical Review D, 2010, 82, .	1.6	28
159	KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if. Astrophysical Journal, 2011, 733, 3.	1.6	28
160	THE <i>HUBBLE SPACE TELESCOPE</i> CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE. Astrophysical Journal, 2012, 745, 31.	1.6	28
161	Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo. European Physical Journal C, 2015, 75, 1.	1.4	28
162	A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies. Astrophysical Journal, 2021, 920, 56.	1.6	28

#	Article	IF	CITATIONS
163	SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE "NAKED-EYE―GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE. Astrophysical Journal, 2009, 701, 1721-1731.	1.6	27
164	LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY. Astrophysical Journal Letters, 2016, 824, L28.	3.0	27
165	Search for relativistic magnetic monopoles withÂtheÂAMANDA-IIÂneutrino telescope. European Physical Journal C, 2010, 69, 361-378.	1.4	26
166	SUGAR: An improved empirical model of Type Ia supernovae based on spectral features. Astronomy and Astrophysics, 2020, 636, A46.	2.1	26
167	Improvement in fast particle track reconstruction with robust statistics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 736, 143-149.	0.7	25
168	Status of High-Energy Neutrino Astronomy. Journal of Physics: Conference Series, 2015, 632, 012039.	0.3	25
169	Measurement of the \$\$u _{mu }\$\$ ν μ energy spectrum with IceCube-79. European Physical Journal C, 2017, 77, 692.	1.4	24
170	Search for neutrino-induced particle showers with IceCube-40. Physical Review D, 2014, 89, .	1.6	23
171	Search for nonstandard neutrino interactions with IceCube DeepCore. Physical Review D, 2018, 97, .	1.6	23
172	Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. Physical Review Letters, 2019, 122, 051102.	2.9	23
173	Search for neutrino-induced cascades with five years of AMANDA data. Astroparticle Physics, 2011, 34, 420-430.	1.9	22
174	Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2210-2223.	1.6	22
175	A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophysical Journal, 2018, 857, 117.	1.6	22
176	Detecting extra-galactic supernova neutrinos in the Antarctic ice. Astroparticle Physics, 2015, 62, 54-65.	1.9	21
177	Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. Astrophysical Journal, 2017, 846, 136.	1.6	21
178	The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22. Astrophysical Journal, 2018, 866, 65.	1.6	21
179	IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae. Astrophysical Journal, 2020, 898, 117.	1.6	21
180	<i>HUBBLE SPACE TELESCOPE</i> DISCOVERY OF A <i>z</i> = 3.9 MULTIPLY IMAGED GALAXY BEHIND THE COMPLEX CLUSTER LENS WARPS J1415.1+36 AT <i>z</i> = 1.026. Astrophysical Journal, 2009, 707, L12-L16.	1.6	20

#	Article	IF	CITATIONS
181	Estimating the explosion time of core-collapse supernovae from their optical light curves. Astroparticle Physics, 2010, 33, 19-23.	1.9	20
182	Search for relativistic magnetic monopoles with IceCube. Physical Review D, 2013, 87, .	1.6	20
183	First search for dark matter annihilations in the Earth with the IceCube detector. European Physical Journal C, 2017, 77, 1.	1.4	20
184	Astrophysical neutrinos and cosmic rays observed by IceCube. Advances in Space Research, 2018, 62, 2902-2930.	1.2	20
185	A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophysical Journal, 2020, 892, 53.	1.6	20
186	A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube. Astrophysical Journal, 2020, 890, 111.	1.6	20
187	Search for ultrahigh-energy tau neutrinos with IceCube. Physical Review D, 2012, 86, .	1.6	19
188	Status of the IceCube Neutrino Observatory. New Astronomy Reviews, 2004, 48, 519-525.	5.2	18
189	The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu. Astrophysical Journal, 2017, 836, 157.	1.6	18
190	Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory. Astrophysical Journal, 2021, 910, 4.	1.6	18
191	Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector. Physical Review D, 2010, 81, .	1.6	17
192	Results from the AMANDA high energy neutrino detector. Nuclear Physics, Section B, Proceedings Supplements, 2001, 91, 423-430.	0.5	16
193	A metric space for Type Ia supernova spectra. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1247-1266.	1.6	16
194	Snapping supernovae at z>1.7. Astroparticle Physics, 2007, 27, 213-225.	1.9	15
195	Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube. Physical Review D, 2021, 104, .	1.6	15
196	The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux. Astrophysical Journal, 2021, 921, 45.	1.6	15
197	Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore. Physical Review D, 2022, 105, .	1.6	15
198	Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 048-048.	1.9	14

#	Article	IF	CITATIONS
199	In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes. Journal of Instrumentation, 2020, 15, P06032-P06032.	0.5	14
200	Measuring diffuse neutrino fluxes with IceCube. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 010-010.	1.9	13
201	The IceCube prototype string in Amanda. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556, 169-181.	0.7	13
202	NEUTRINO ANALYSIS OF THE 2010 SEPTEMBER CRAB NEBULA FLARE AND TIME-INTEGRATED CONSTRAINTS ON NEUTRINO EMISSION FROM THE CRAB USING ICECUBE. Astrophysical Journal, 2012, 745, 45.	1.6	13
203	TYPE Ia SUPERNOVA HUBBLE RESIDUALS AND HOST-GALAXY PROPERTIES. Astrophysical Journal, 2014, 784, 51.	1.6	13
204	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. Astronomy and Astrophysics, 2019, 626, A117.	2.1	13
205	Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei. Astrophysical Journal Letters, 2022, 933, L28.	3.0	13
206	Calibration and survey of AMANDA with the SPASE detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 522, 347-359.	0.7	12
207	Rest-FrameR-band Light Curve of az~ 1.3 Supernova Obtained with Keck Laser Adaptive Optics. Astronomical Journal, 2007, 133, 2709-2715.	1.9	12
208	Background studies for acoustic neutrino detection at the South Pole. Astroparticle Physics, 2012, 35, 312-324.	1.9	12
209	Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory. Astrophysical Journal, 2020, 891, 9.	1.6	12
210	The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates. Astrophysical Journal, 2021, 912, 71.	1.6	12
211	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophysical Journal Letters, 2021, 920, L45.	3.0	12
212	Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data. Physical Review Letters, 2022, 128, 051101.	2.9	12
213	SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE. Astrophysical Journal, 2012, 748, 118.	1.6	11
214	Neutrino oscillation studies with IceCube-DeepCore. Nuclear Physics B, 2016, 908, 161-177.	0.9	11
215	Understanding type Ia supernovae through their <i>U</i> band spectra. Astronomy and Astrophysics, 2018, 614, A71.	2.1	11
216	The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light. Astrophysical Journal, 2021, 912, 70.	1.6	11

#	Article	IF	CITATIONS
217	A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors. Journal of Instrumentation, 2021, 16, P08034.	0.5	11
218	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. Astrophysical Journal, 2020, 893, 102.	1.6	11
219	The IceProd framework: Distributed data processing for the IceCube neutrino observatory. Journal of Parallel and Distributed Computing, 2015, 75, 198-211.	2.7	9
220	Neutrino-nucleon cross sections at energies of Megaton-scale detectors. EPJ Web of Conferences, 2016, 116, 08003.	0.1	9
221	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	1.6	9
222	Constraints on high-energy neutrino emission from SN 2008D. Astronomy and Astrophysics, 2011, 527, A28.	2.1	8
223	TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM <i>K</i> -CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES. Astrophysical Journal, 2015, 800, 57.	1.6	8
224	Correcting for peculiar velocities of Type Ia supernovae in clusters of galaxies. Astronomy and Astrophysics, 2018, 615, A162.	2.1	8
225	The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries*. Astrophysical Journal, 2021, 912, 87.	1.6	8
226	LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories. Computer Physics Communications, 2021, 266, 108018.	3.0	8
227	A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts. Astrophysical Journal, 2019, 883, 125.	1.6	8
228	Tracing tau-neutrinos from WIMP-annihilation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 511, 119-128.	1.5	7
229	SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR. Astrophysical Journal, 2016, 830, 129.	1.6	7
230	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. Astrophysical Journal, 2022, 926, 59.	1.6	7
231	Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>μ</mml:mi></mml:msub> Disappearance at IceCube. Physical Review Letters. 2022. 129</mml:math 	2.9	7
232	New results from the Antarctic Muon And Neutrino Detector Array. Nuclear Physics, Section B, Proceedings Supplements, 2005, 143, 343-350.	0.5	6
233	SCALA: In situ calibration for integral field spectrographs. Astronomy and Astrophysics, 2017, 607, A113.	2.1	6
234	First all-flavor search for transient neutrino emission using 3-years of IceCube DeepCore data. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 027.	1.9	6

#	Article	IF	CITATIONS
235	RESULTS FROM AMANDA. Modern Physics Letters A, 2002, 17, 2019-2037.	0.5	5
236	THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE. Astrophysical Journal, 2016, 816, 75.	1.6	5
237	Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	1.9	5
238	The SNEMO and SUGAR Companion Data Sets. Research Notes of the AAS, 2020, 4, 63.	0.3	5
239	New results from the AMANDA Neutrino Telescope. Nuclear Physics, Section B, Proceedings Supplements, 2005, 145, 319-322.	0.5	3
240	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>α (Corrigendum)</i> . Astronomy and Astrophysics, 2018, 612, C1.	2.1	3
241	Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. Astroparticle Physics, 2020, 116, 102392.	1.9	3
242	Design and performance of the first IceAct demonstrator at the South Pole. Journal of Instrumentation, 2020, 15, T02002-T02002.	0.5	3
243	Resolving the high-energy neutrino sky at $3\hat{l}f$. Nature Astronomy, 2021, 5, 732-734.	4.2	3
244	RECENT RESULTS FROM AMANDA. International Journal of Modern Physics A, 2001, 16, 1013-1015.	0.5	2
245	Results from the AMANDA neutrino telescope. Nuclear Physics, Section B, Proceedings Supplements, 2004, 136, 85-92.	0.5	2
246	A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS). , 2014, , .		2
247	Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2015, 578, C1.	2.1	2
248	The AMANDA neutrino detector - Status report. Nuclear Physics, Section B, Proceedings Supplements, 2000, 85, 141-145.	0.5	1
249	NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE. International Journal of Modern Physics A, 2005, 20, 6919-6923.	0.5	1
250	Cosmology with the Nearby Supernova Factory. Progress in Particle and Nuclear Physics, 2011, 66, 335-339.	5.6	1
251	The self-calibrating Hubble diagram. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 001-001.	1.9	1
252	Neutrino astronomy with IceCube and beyond. Journal of Physics: Conference Series, 2017, 888, 012007.	0.3	1

#	Article	IF	CITATIONS
253	Recent results from AMANDA II. Nuclear Physics, Section B, Proceedings Supplements, 2003, 117, 126-128.	0.5	Ο
254	Physics and Results from the AMANDA-II High Energy Neutrino Telescope. Symposium - International Astronomical Union, 2003, 214, 357-371.	0.1	0
255	Testing dark energy with supernovae. Annalen Der Physik, 2010, 19, 230-237.	0.9	Ο
256	Neutrinos from Core-Collapse Supernovae. , 2017, , 141-153.		0
257	SCALA: Towards a physical calibration of CALSPEC standard stars based on a NIST-traceable reference for SNIFS. Proceedings of the International Astronomical Union, 2018, 14, 494-494.	0.0	0
258	Recent Results from AMANDA II. , 2003, , 126-128.		0
259	Suche nach astrophysikalischen Neutrinos am Südpol. Akademie Der Wissenschaften Zu Goettingen Jahrbuch, 2011, 2010, 169-177.	0.0	0