Zhi'en Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1722363/publications.pdf

Version: 2024-02-01

144 papers 8,066 citations

50276 46 h-index 84 g-index

154 all docs

154 docs citations

154 times ranked

7055 citing authors

#	Article	IF	Citations
1	Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 2022, 20, 211-221.	16.2	61
2	Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review. Environmental Research, 2022, 207, 112219.	7.5	45
3	Glycine-induced synthesis of vaterite by direct aqueous mineral carbonation of desulfurization gypsum. Environmental Chemistry Letters, 2022, 20, 2261-2269.	16.2	12
4	Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology, 2022, 355, 127303.	9.6	50
5	Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems. Renewable and Sustainable Energy Reviews, 2022, 165, 112595.	16.4	23
6	Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 2021, 216, 119223.	8.8	278
7	Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: Performance, hydrodynamic mechanism and contribution quantification model. Water Research, 2021, 188, 116518.	11.3	169
8	Unprofitability of small biogas plants without subsidies in the Brandenburg region. Environmental Chemistry Letters, 2021, 19, 1823-1829.	16.2	20
9	A data-driven approach to anomaly detection and vulnerability dynamic analysis for large-scale integrated energy systems. Energy Conversion and Management, 2021, 234, 113926.	9.2	15
10	Multi-objective optimizations on thermal and hydraulic performance of symmetric and asymmetric bionic Y-shaped fractal networks by genetic algorithm coupled with CFD simulation. International Communications in Heat and Mass Transfer, 2021, 124, 105261.	5 . 6	14
11	Heat transfer enhancement and exergy efficiency improvement of a micro combustor with internal spiral fins for thermophotovoltaic systems. Applied Thermal Engineering, 2021, 189, 116723.	6.0	42
12	A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum. Journal of Cleaner Production, 2021, 302, 126930.	9.3	43
13	Comparative investigation of combustion and thermal characteristics of a conventional micro combustor and micro combustor with internal straight/spiral fins for thermophotovoltaic system. International Journal of Hydrogen Energy, 2021, 46, 22165-22179.	7.1	22
14	Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy. Energy Conversion and Management, 2021, 238, 114148.	9.2	28
15	Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. Journal of Membrane Science, 2021, 628, 119215.	8.2	16
16	Multi-objective optimization and multi-factors analysis of the thermal/hydraulic performance of the bionic Y-shaped fractal heat sink. Applied Thermal Engineering, 2021, 195, 117157.	6.0	20
17	Gas, Water and Solid Waste Treatment Technology. Processes, 2021, 9, 1397.	2.8	1
18	Gas hydrate formation in the presence of mixed surfactants and alumina nanoparticles. Journal of Natural Gas Science and Engineering, 2021, 94, 104049.	4.4	35

#	Article	IF	CITATIONS
19	CO2-selective membranes containing amino acid salts for CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119696.	8.2	28
20	Application of novel thermochemical methods for enhanced synthesis of alternative fuels in the period of energy transition. Fuel, 2021, 306, 121958.	6.4	5
21	Numerical investigation of a novel micro combustor with a central and bilateral slotted blunt body. International Journal of Hydrogen Energy, 2021, 46, 23564-23579.	7.1	25
22	CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2021, 15, 720-754.	4.4	38
23	Membranes for Gas Separation. Membranes, 2021, 11, 755.	3.0	6
24	Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review. Energy and Environmental Science, 2021, 14, 6122-6157.	30.8	98
25	Sustainable development in period of COVID-19 pandemic. Journal of Cleaner Production, 2021, 328, 129577.	9.3	14
26	CO2 capture from coalbed methane using membranes: a review. Environmental Chemistry Letters, 2020, 18, 79-96.	16.2	46
27	Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Applied Energy, 2020, 260, 114313.	10.1	215
28	Effect of porous media and its distribution on methane hydrate formation in the presence of surfactant. Applied Energy, 2020, 261, 114373.	10.1	58
29	Novel process for carbon capture and utilization and saline wastes valorization. Journal of Natural Gas Science and Engineering, 2020, 73, 103071.	4.4	18
30	Profitability analysis of a novel configuration to synergize biogas upgrading and Power-to-Gas. Energy Conversion and Management, 2020, 224, 113369.	9.2	24
31	Simultaneous removal of CO2 and H2S from coalbed methane in a membrane contactor. Journal of Cleaner Production, 2020, 273, 123107.	9.3	26
32	Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. Membranes, 2020, 10, 380.	3.0	28
33	Progress in use of surfactant in nearly static conditions in natural gas hydrate formation. Frontiers in Energy, 2020, 14, 463-481.	2.3	26
34	Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278, 115627.	10.1	135
35	Kinetic Analysis of Algae Gasification by Distributed Activation Energy Model. Processes, 2020, 8, 927.	2.8	6
36	Stepping towards a low-carbon economy. Formic acid from biogas as case of study. Applied Energy, 2020, 268, 115033.	10.1	35

#	Article	IF	CITATIONS
37	A NOVEL FRACTAL MODEL FOR ESTIMATING PERMEABILITY IN LOW-PERMEABLE SANDSTONE RESERVOIRS. Fractals, 2020, 28, 2040005.	3.7	14
38	Status and perspective of CO2 absorption process. Energy, 2020, 205, 118057.	8.8	54
39	Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews, 2020, 125, 109799.	16.4	369
40	Gas Capture Processes. Processes, 2020, 8, 70.	2.8	2
41	Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 592-605.	3.4	110
42	CO2 sequestration: high conversion of gypsum into CaCO3 by ultrasonic carbonation. Environmental Chemistry Letters, 2020, 18, 1369-1377.	16.2	30
43	Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Conversion and Management, 2019, 196, 1445-1452.	9.2	15
44	Understanding the effect of Ca and Mg ions from wastes in the solvent regeneration stage of a biogas upgrading unit. Science of the Total Environment, 2019, 691, 93-100.	8.0	23
45	A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers, 2019, 11, 1252.	4.5	326
46	Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body. Energy, 2019, 189, 116242.	8.8	48
47	The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity. Energy, 2019, 188, 116051.	8.8	92
48	Non-Monotonic Trends of Hydrogen Adsorption on Single Atom Doped g-C3N4. Catalysts, 2019, 9, 84.	3.5	19
49	Emerging Advances in Petrophysics: Porous Media Characterization and Modeling of Multiphase Flow. Energies, 2019, 12, 282.	3.1	7
50	Recent Advances in Flow and Transport Properties of Unconventional Reservoirs. Energies, 2019, 12, 1865.	3.1	11
51	Remediation of acid mine drainage. Environmental Chemistry Letters, 2019, 17, 1529-1538.	16.2	79
52	Design, Modeling, and Experiments of the Vortex-Induced Vibration Piezoelectric Energy Harvester with Bionic Attachments. Complexity, 2019, 2019, 1-13.	1.6	12
53	The Influence of Sorption Pressure on Gas Diffusion in Coal Particles: An Experimental Study. Processes, 2019, 7, 219.	2.8	17
54	Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes, 2019, 7, 151.	2.8	36

#	Article	IF	Citations
55	Prediction of CO2 absorption by physicalÂsolvents using a chemoinformatics-based machine learning model. Environmental Chemistry Letters, 2019, 17, 1397-1404.	16.2	42
56	Experimental studies on carbon dioxide absorption using potassium carbonate solutions with amino acid salts. Separation and Purification Technology, 2019, 219, 47-54.	7.9	28
57	Nanostructured Membrane Materials for CO2 Capture: A Critical Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3173-3179.	0.9	19
58	Biogas upgrading by cryogenic techniques. Environmental Chemistry Letters, 2019, 17, 1251-1261.	16.2	71
59	Carbon Mineralization by Reaction with Steel-Making Waste: A Review. Processes, 2019, 7, 115.	2.8	48
60	Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 2019, 172, 1066-1078.	8.8	197
61	Multiobjective optimization for exergoeconomic analysis of an integrated cogeneration system. International Journal of Energy Research, 2019, 43, 1868-1881.	4.5	18
62	Decarburization characteristics of coalbed methane by membrane separation technology. Fuel, 2019, 242, 470-478.	6.4	22
63	Potential of tri-reforming process and membrane technology for improving ammonia production and CO2 reduction. Science of the Total Environment, 2019, 664, 567-575.	8.0	20
64	Insights into the Fouling Propensities of Natural Derived Alginate Blocks during the Microfiltration Process. Processes, 2019, 7, 858.	2.8	12
65	Theoretical and Experimental Insights into the Mechanism for Gas Separation through Nanochannels in 2D Laminar MXene Membranes. Processes, 2019, 7, 751.	2.8	23
66	Advances in Modelling of Heat and Mass Transfer in Porous Materials. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.8	3
67	Comparing Economics, Environmental Pollution and Health Efficiency in China. International Journal of Environmental Research and Public Health, 2019, 16, 4827.	2.6	14
68	Numerical Investigation on Heat-Transfer and Hydromechanical Performance Inside Contaminant-Insensitive Sublimators Under a Vacuum Environment for Spacecraft Applications. Energies, 2019, 12, 4562.	3.1	6
69	Estimating solubility of supercritical H2S in ionic liquids through a hybrid LSSVM chemical structure model. Chinese Journal of Chemical Engineering, 2019, 27, 620-627.	3.5	15
70	Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters, 2019, 17, 241-257.	16.2	222
71	Pore Network Modeling of Shale Gas Reservoirs: Gas Desorption and Slip Flow Effects. Transport in Porous Media, 2019, 126, 633-653.	2.6	28
72	High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 2019, 181, 645-652.	9.2	388

#	Article	IF	CITATIONS
73	Editorial to the Special Issue: Modeling and Characterization of Low Permeability (Tight) and Nanoporous Reservoirs. Transport in Porous Media, 2019, 126, 523-525.	2.6	1
74	Fundamental investigation of an environmentally-friendly surfactant agent for chemical enhanced oil recovery. Fuel, 2019, 238, 186-197.	6.4	89
75	Sulfur dioxide solubility prediction in ionic liquids by a group contribution — LSSVM model. Chemical Engineering Research and Design, 2019, 142, 44-52.	5.6	17
76	Biomimetic dynamic membrane for aquatic dye removal. Water Research, 2019, 151, 243-251.	11.3	295
77	Estimation of Sandstone Permeability with SEM Images Based on Fractal Theory. Transport in Porous Media, 2019, 126, 701-712.	2.6	24
78	CO2 Capture via Nanofluids., 2019,, 479-489.		0
79	n -Decane hydro-conversion over bi- and tri-metallic Al-HMS catalyst in a mini-reactor. Chinese Journal of Chemical Engineering, 2018, 26, 1330-1339.	3 . 5	11
80	Effect of Porous Media and Sodium Dodecyl Sulphate Complex System on Methane Hydrate Formation. Energy & Energy	5.1	48
81	Investigation on the effect of water vapor on the catalytic combustion of methane on platinum. Petroleum Science and Technology, 2018, 36, 494-499.	1.5	2
82	A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada. Applied Energy, 2018, 213, 76-91.	10.1	169
83	Carbon Dioxide Absorption from Biogas by Amino Acid Salt Promoted Potassium Carbonate Solutions in a Hollow Fiber Membrane Contactor: A Numerical Study. Energy & Ene	5.1	30
84	CO ₂ Capture Using Hollow Fiber Membranes: A Review of Membrane Wetting. Energy & Energy & Fuels, 2018, 32, 963-978.	5.1	101
85	Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. Journal of CO2 Utilization, 2018, 25, 108-119.	6.8	108
86	Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – A case study from the Beijing-Tianjin-Hebei region. Atmospheric Environment, 2018, 183, 225-233.	4.1	188
87	Numerical investigation on combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramidÂbluff body. International Journal of Hydrogen Energy, 2018, 43, 7581-7590.	7.1	56
88	Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy, 2018, 118, 527-535.	8.9	252
89	Methane combustion reactivity during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure. Applied Surface Science, 2018, 435, 776-785.	6.1	17
90	Modeling of a CO2-piperazine-membrane absorption system. Chemical Engineering Research and Design, 2018, 131, 375-384.	5.6	88

#	Article	IF	Citations
91	Optimization of RDM-UF for alfalfa wastewater treatment using RSM. Environmental Science and Pollution Research, 2018, 25, 1439-1447.	5.3	12
92	A robust predictive tool for estimating CO 2 solubility in potassium based amino acid salt solutions. Chinese Journal of Chemical Engineering, 2018, 26, 740-746.	3.5	40
93	Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Bioresource Technology, 2018, 250, 398-405.	9.6	82
94	Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012032.	0.6	1
95	A BRIEF REVIEW OF ENHANCED CO2 ABSORPTION BY NANOPARTICLES. International Journal of Energy for A Clean Environment, 2018, 19, 201-215.	1.1	8
96	PREFACE: ENERGY ISSUES IN CARBON CAPTURE. International Journal of Energy for A Clean Environment, 2018, 19, v-vii.	1.1	1
97	Broadening Band of Wind Speed for Aeroelastic Energy Scavenging of a Cylinder through Buffeting in the Wakes of a Squared Prism. Shock and Vibration, 2018, 2018, 1-14.	0.6	7
98	Natural gas hydrate formation dynamics in a diesel water-in-oil emulsion system. Petroleum Science and Technology, 2018, 36, 1649-1656.	1.5	10
99	Effectiveness of amino acid salt solutions in capturing CO2: A review. Renewable and Sustainable Energy Reviews, 2018, 98, 179-188.	16.4	167
100	A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management, 2018, 227, 395-405.	7.8	292
101	Energy harvesting from flow-induced vibration: a lumped parameter model. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2903-2913.	2.3	42
102	ANFIS based evolutionary concept for estimating nucleate pool boiling heat transfer of refrigerant-ester oil containing nanoparticles. International Journal of Refrigeration, 2018, 96, 38-49.	3.4	13
103	Performance Analysis of a Novel Cascade Absorption Refrigeration for Low-Grade Waste Heat Recovery. ACS Sustainable Chemistry and Engineering, 2018, 6, 8350-8363.	6.7	45
104	Remediation of lime-free roasting chromite ore processing residue (COPR) by water leaching and pyrolysis process. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1417-1425.	2.3	7
105	A new chemical structure-based model to estimate solid compound solubility in supercritical CO2. Journal of CO2 Utilization, 2018, 26, 262-270.	6.8	24
106	Mining the intrinsic trends of CO2 solubility in blended solutions. Journal of CO2 Utilization, 2018, 26, 496-502.	6.8	55
107	Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. Journal of Natural Gas Science and Engineering, 2018, 56, 266-280.	4.4	69
108	High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresource Technology, 2018, 266, 374-381.	9.6	102

#	Article	IF	CITATIONS
109	Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1788-1797.	2.3	36
110	Analysis of Spontaneous Imbibition in Carbon Nanotube. , 2018, , 793-798.		0
111	Zeolites Nanocomposite Membrane Applications in CO2 Capture. , 2018, , 916-921.		4
112	Modeling of capillary-driven flow in nanoporous media. , 2018, , 139-151.		0
113	Machine learning predictive framework for CO2 thermodynamic properties in solution. Journal of CO2 Utilization, 2018, 26, 152-159.	6.8	54
114	Functional Group Effects on the HOMO–LUMO Gap of g-C3N4. Nanomaterials, 2018, 8, 589.	4.1	42
115	Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	21
116	AN INTRODUCTION TO FRACTAL-BASED APPROACHES IN UNCONVENTIONAL RESERVOIRS — PART I. Fractals, 2018, 26, 1802001.	3.7	18
117	A comprehensive investigation on performance of oil and gas development in Nigeria: Technical and non-technical analyses. Energy, 2018, 158, 666-680.	8.8	78
118	2.29 Desulfurization Materials., 2018,, 944-979.		18
119	Carbon Capture. , 2018, , 997-1016.		21
120	Effect of flow and module configuration on SO2 absorption by using membrane contactors. Global Nest Journal, 2018, 19, 716-725.	0.1	3
121	A quantitative oil and gas reservoir evaluation system for development. Journal of Natural Gas Science and Engineering, 2017, 42, 31-39.	4.4	123
122	Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO 2 and H 2 S) removal from natural gas. Journal of CO2 Utilization, 2017, 18, 362-369.	6.8	125
123	Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and CO2 capture. Journal of Natural Gas Science and Engineering, 2017, 46, 188-198.	4.4	46
124	Application of Artificial Neural Networks for Catalysis: A Review. Catalysts, 2017, 7, 306.	3.5	167
125	Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening. International Journal of Photoenergy, 2017, 2017, 1-10.	2.5	49
126	Mechanical Properties of High-Nb X80 Steel Weld Pipes for the Second West-to-East Gas Transmission Pipeline Project. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.8	5

#	Article	IF	Citations
127	Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. Journal of Natural Gas Science and Engineering, 2016, 31, 589-595.	4.4	77
128	Threshold flux and limiting flux for micellar enhanced ultrafiltration as affected by feed water: experimental and modeling studies. Journal of Cleaner Production, 2016, 112, 1241-1251.	9.3	30
129	Virtual special issue: Sour gas reservoirs and sulfur-removal technologies. Journal of Natural Gas Science and Engineering, 2015, 26, 1506-1507.	4.4	3
130	Analysis of CO2 Capture From Power-Plant Flue Gas Using the Membrane Gas Absorption (MGA) Method. , 2015, , .		0
131	Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO2 removal from flue gas. RSC Advances, 2015, 5, 424-433.	3.6	7
132	Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell. International Journal of Hydrogen Energy, 2015, 40, 1886-1893.	7.1	46
133	Publication trends in natural gas research (2013–2014). Journal of Natural Gas Science and Engineering, 2015, 27, 1265-1269.	4.4	0
134	Influence of the Membrane Module Geometry on SO ₂ Removal: A Numerical Study. Industrial & Study: Engineering Chemistry Research, 2015, 54, 11619-11627.	3.7	21
135	Modeling of CO2 Separation from Flue Gas by Methyldiethanolamine and 2-(1-Piperazinyl)-Ethylamine in Membrane Contactors: Effect of Gas and Liquid Parameters. Journal of Energy Engineering - ASCE, 2015, 141, .	1.9	9
136	Numerical Simulation and Analysis of CO2Removal in a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Chemical Engineering, 2014, 2014, 1-7.	2.4	10
137	Energy Harvester Based on the Synchronization Phenomenon of a Circular Cylinder. Mathematical Problems in Engineering, 2014, 2014, 1-9.	1.1	6
138	Theoretical Study on CO ₂ Absorption from Biogas by Membrane Contactors: Effect of Operating Parameters. Industrial & Engineering Chemistry Research, 2014, 53, 14075-14083.	3.7	63
139	Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling of Biogas Upgrading in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynamic Modeling in Hollow Fiber Membrane Contactors. Energy & Dynam	5.1	47
140	Investigation of CO2 absorption in methyldiethanolamine and 2-(1-piperazinyl)-ethylamine using hollow fiber membrane contactors: Part C. Effect of operating variables. Journal of Natural Gas Science and Engineering, 2014, 20, 58-66.	4.4	29
141	CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19, 311-316.	4.4	65
142	Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin. Letters in Applied Microbiology, 2013, 57, 502-509.	2.2	11
143	Viscous flow and diffusion of liquids in microporous glasses. Physical Review B, 1992, 46, 10701-10705.	3.2	28
144	Use of half-cylinder obstacle for enhancing aeroelastic energy harvesting. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	2.3	0