Qiang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1722259/publications.pdf

Version: 2024-02-01

76	1,087	20	28
papers	citations	h-index	g-index
76	76	76	647
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions. Chemical Engineering Journal, 2019, 357, 761-775.	6.6	51
2	Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming. Chinese Journal of Chemical Engineering, 2019, 27, 1870-1878.	1.7	51
3	CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds. Powder Technology, 2017, 308, 422-433.	2.1	44
4	Bubble breakup in a swirl-venturi microbubble generator. Chemical Engineering Journal, 2021, 403, 126397.	6.6	44
5	Experimental investigation of electrostatic effect on bubble behaviors in gasâ€solid fluidized bed. AICHE Journal, 2015, 61, 1160-1171.	1.8	39
6	Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst. Journal of Catalysis, 2018, 360, 145-151.	3.1	39
7	Methanol to Propylene Process in a Moving Bed Reactor with Byproducts Recycling: Kinetic Study and Reactor Simulation. Industrial & Engineering Chemistry Research, 2014, 53, 4623-4632.	1.8	35
8	Realization and control of multiple temperature zones in liquidâ€containing gas–solid fluidized bed reactor. AICHE Journal, 2016, 62, 1454-1466.	1.8	34
9	Energy and Water Management for Industrial Large-Scale Water Networks: A Systematic Simultaneous Optimization Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 2269-2282.	3.2	33
10	A novel two-step method to design inter-plant hydrogen network. International Journal of Hydrogen Energy, 2019, 44, 5686-5695.	3.8	32
11	Entanglement Formation Mechanism in the POSS Modified Heterogeneous Ziegler–Natta Catalysts. Macromolecules, 2019, 52, 7593-7602.	2.2	31
12	Leveraging 3D Printing for the Design of High-Performance Venturi Microbubble Generators. Industrial & Engineering Chemistry Research, 2020, 59, 8447-8455.	1.8	31
13	Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108022.	1.8	31
14	Characterization of the bubble swarm trajectory in a jet bubbling reactor. AICHE Journal, 2019, 65, e16565.	1.8	29
15	Experimental investigation of electrostatic effect on particle motions in gasâ€solid fluidized beds. AICHE Journal, 2015, 61, 3628-3638.	1.8	24
16	Heat Transfer Blocks Diagram: A Novel Tool for Targeting and Design of Heat Exchanger Networks Inside Heat Integrated Water Allocation Networks. ACS Sustainable Chemistry and Engineering, 2018, 6, 2704-2715.	3.2	24
17	Simultaneous Design of Hydrogen Allocation Networks and PSA Inside Refineries. Industrial & Engineering Chemistry Research, 2020, 59, 4712-4720.	1.8	24
18	Balancing between risk and profit in refinery hydrogen networks: A Worst-Case Conditional Value-at-Risk approach. Chemical Engineering Research and Design, 2019, 146, 201-210.	2.7	23

#	Article	IF	CITATIONS
19	Experimental and Modeling Investigation of Liquid-Induced Agglomeration in a Gas–Solid Fluidized Bed with Liquid Spray. Industrial & Engineering Chemistry Research, 2020, 59, 11810-11822.	1.8	22
20	Investigating Agglomeration Behaviors in High Temperature Gas–Solid Fluidized Beds with Liquid Injection. Industrial & Degree Engineering Chemistry Research, 2018, 57, 5482-5494.	1.8	21
21	Novel graphical tool for the design of the heat integrated water allocation networks. AICHE Journal, 2016, 62, 670-686.	1.8	20
22	New transshipment type MINLP model for heat exchanger network synthesis. Chemical Engineering Science, 2017, 173, 537-559.	1.9	18
23	Automatic Design of Multi-Impurity Refinery Hydrogen Networks Using Mixing Potential Concept. Industrial & Engineering Chemistry Research, 2017, 56, 6703-6710.	1.8	17
24	Methanol to Propylene over Foam SiC-Supported ZSM-5 Catalyst: Performance of Multiple Reaction–Regeneration Cycles. Industrial & Engineering Chemistry Research, 2019, 58, 27-33.	1.8	17
25	Simultaneous Optimization of a Heat Exchanger Network and Operating Conditions of Organic Rankine Cycle. Industrial & Description of Chemistry Research, 2020, 59, 11596-11609.	1.8	17
26	Contribution of the Initially Entangled State and Particle Size to the Sintering Kinetics of UHMWPE. Macromolecules, 2022, 55, 1310-1320.	2.2	17
27	Stability Analysis of Ethylene Polymerization in a Liquid-Containing Gas–Solid Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 5616-5629.	1.8	16
28	Effects of DC electric fields on meso-scale structures in electrostatic gas-solid fluidized beds. Chemical Engineering Journal, 2018, 332, 293-302.	6.6	16
29	Hydrodynamics in a jet bubbling reactor: Experimental research and mathematical modeling. AICHE Journal, 2018, 64, 1814-1827.	1.8	16
30	Systematic Design and Optimization of a Membrane–Cryogenic Hybrid System for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 17186-17197.	3.2	14
31	Thermal-Stability Analysis of Ethylene-Polymerization Fluidized-Bed Reactors under Condensed-Mode Operation through a TPMâ^'PBM Integrated Model. Industrial & Engineering Chemistry Research, 2019, 58, 9486-9499.	1.8	13
32	Classification and identification of gas–liquid dispersion states in a jet bubbling reactor. AICHE Journal, 2020, 66, e16778.	1.8	13
33	Bubble Size Distribution and Rise Velocity in a Jet Bubbling Reactor. Industrial & Engineering Chemistry Research, 2019, 58, 19271-19279.	1.8	12
34	A volatile spray zone model and experimentation in a gas-solid fluidized bed with liquid injection. Chemical Engineering Science, 2021, 231, 116306.	1.9	12
35	Energy configuration and operation optimization of refinery fuel gas networks. Applied Energy, 2015, 139, 365-375.	5.1	11
36	Revealing the Dynamic Behaviors of Tetrahydrofuran for Tailoring the Active Species of Ziegler–Natta Catalysts. ACS Catalysis, 2021, 11, 4411-4421.	5 . 5	11

#	Article	IF	CITATIONS
37	Performance Evaluation and Scale-Up Behavior of an Engineered In-Line Mixer for 3D Printing. Industrial & Engineering Chemistry Research, 2021, 60, 11568-11578.	1.8	11
38	Synthesis of Weakly Entangled Ultra-High-Molecular-Weight Polyethylene with a Fine Particle Size. Industrial & Engineering Chemistry Research, 2021, 60, 3354-3362.	1.8	11
39	Experimental characterization of liquid film behavior during droplets–polyethylene particle collision. AICHE Journal, 2020, 66, e16909.	1.8	10
40	Optimal process design for recovering effluent gas at subambient temperature. Journal of Cleaner Production, 2017, 144, 130-141.	4.6	9
41	Kinetic and regenerator modeling of the coke combustion in the moving bed MTP process. Chemical Engineering Research and Design, 2017, 122, 52-62.	2.7	9
42	Optimal design of hybrid cryogenic flash and membrane system. Chemical Engineering Science, 2018, 179, 13-31.	1.9	9
43	Targeting and Design of Work and Heat Exchange Networks. Industrial & Designeering Chemistry Research, 2020, 59, 12471-12486.	1.8	9
44	New Insights into <i>T</i> â€" <i>H</i> / <i>H</i> / <i>H</i> à€" <i>F</i> Diagrams for Synthesis of Heat Exchanger Networks inside Heat Integrated Water Allocation Networks. Industrial & Diagrams for Synthesis of Heat Exchanger Research, 2018, 57, 9323-9328.	1.8	8
45	The Intermittent Dormancy of Ethylene Polymerization with the Assistance of Nitrogen Microbubbles. Macromolecules, 2021, 54, 9418-9426.	2.2	7
46	Simulation-Based Multiobjective Optimization of the Product Separation Process within an MTP Plant. Industrial & Engineering Chemistry Research, 2019, 58, 12166-12178.	1.8	6
47	Simultaneous Optimization for Organic Rankine Cycle Design and Heat Integration. Industrial & Engineering Chemistry Research, 2020, 59, 20455-20471.	1.8	6
48	Evolution and fluidization behaviors of wet agglomerates based on formation-fragmentation competition mechanism. Chemical Engineering Science, 2022, 247, 116933.	1.9	6
49	Kinetic Perspective on Methanol to Propylene Process via HZSM-5 Catalyst: Balancing between Reaction and Diffusion. Industrial & Engineering Chemistry Research, 2022, 61, 2055-2067.	1.8	6
50	Strategy of effluent recovery technology selection in polyolefin plants. Chemical Engineering Research and Design, 2016, 103, 405-412.	2.7	5
51	Efficient Synthesis of Low-Polydispersity UHMWPE by Elevating Active Sites on Anchored POSS Molecules. Industrial & Engineering Chemistry Research, 2020, 59, 19964-19971.	1.8	5
52	Electrostatic effects on hydrodynamics in the riser of the circulating fluidized bed for polypropylene. AICHE Journal, 2020, 66, e16916.	1.8	5
53	Efficient Strategy for the Synthesis of Work and Heat Exchange Networks. Industrial & Engineering Chemistry Research, 2021, 60, 1756-1773.	1.8	5
54	A 3D-printed continuous flow platform for the synthesis of methylaluminoxane. Green Chemistry, 2021, 23, 4087-4094.	4.6	5

#	Article	IF	CITATIONS
55	Flow Toolkit for Measuring Reaction Enthalpy and Application to Highly Exothermic Synthesis of Alkylaluminoxanes. Organic Process Research and Development, 2022, 26, 1506-1513.	1.3	5
56	Solvents Molecular Mobility in Coked Catalyst ZSM-5 Studied by NMR Relaxation and Pulsed Field Gradient Techniques. Industrial & Engineering Chemistry Research, 2018, 57, 6647-6653.	1.8	4
57	Indirect Heat Integration across Plants: Novel Representation of Intermediate Fluid Circles. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 7233-7246.	1.8	4
58	Selective distribution and contribution of nickel based pre-catalyst in the multisite catalyst for the synthesis of desirable bimodal polyethylene. European Polymer Journal, 2020, 135, 109878.	2.6	4
59	Evolution and Interaction Characteristics of Liquid Flow and Bubbles in a Jet Bubbling Column. Industrial & Description of the Engineering Chemistry Research, 2020, 59, 21217-21230.	1.8	4
60	The screened waveguide for intrusive acoustic emission detection and its application in circulating fluidized bed. AICHE Journal, 2021, 67, e17118.	1.8	4
61	Modeling Agglomeration Behavior in High Temperature Gas–Solid Fluidized Beds via Monte Carlo Method. Industrial & Engineering Chemistry Research, 2017, 56, 1112-1121.	1.8	3
62	Critical comparison of electrostatic effects on hydrodynamics and heat transfer in a bubbling fluidized bed with a central jet. Chemical Engineering Science, 2018, 191, 156-168.	1.9	3
63	Electrostatic Distribution in the Riser of the Multizone Circulating Fluidized Bed for Polypropylene. Industrial & Distribution in the Riser of the Multizone Circulating Fluidized Bed for Polypropylene.	1.8	3
64	Optimal Design of a Subambient Membrane Separation System with Work and Heat Integration for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 15194-15207.	1.8	3
65	Tailoring the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization. Industrial & Description of the Chain Entanglement by Nitrogen Bubble-Assisted Polymerization of the Chain Entanglement by Nitrogen Bubble Polymerization of the Chain Entanglemen	1.8	3
66	Suppressing the Entanglements of Ultrahigh-Molecular-Weight Polyethylene via Controlling the Adhesion Effect in a POSS-Modified Support. Industrial & Engineering Chemistry Research, 2022, 61, 6367-6374.	1.8	3
67	Pore plugging effects on the performance of ZSM-5 catalyst in MTP reaction using a discrete model. Chinese Journal of Chemical Engineering, 2021, 32, 253-263.	1.7	2
68	Numerical Study of the Scaling Rules for Riser with Consideration of Cluster Effect. Industrial & Engineering Chemistry Research, 2016, 55, 9533-9543.	1.8	1
69	Enhanced Reaction Performances for Light Olefin Production from Butene through Cofeeding Reaction with Methanol. Energy & Samp; Fuels, 2018, 32, 787-795.	2.5	1
70	Effect of the Scale-Up Process on the Reactor Performance within the Riser: Simulation Using Ozone Decomposition. Industrial & Engineering Chemistry Research, 2021, 60, 11479-11489.	1.8	1
71	Collision Characterization of Mixed Hydrocarbon Liquid Droplets with Polyethylene Particles. Industrial & Engineering Chemistry Research, 2021, 60, 16478-16489.	1.8	1
72	Modeling and Control of COVID-19 Transmission from a Perspective of Polymerization Reaction Dynamics. Industrial &	1.8	1

#	Article	IF	CITATIONS
73	é«~性能èšä¹™çƒ¯äº§å"设计. Chinese Science Bulletin, 2022, , .	0.4	1
74	Structural Design and Performance of a Jet-Impinging Type Microbubble Generator. Industrial & Engineering Chemistry Research, 2022, 61, 4445-4459.	1.8	1
75	Design of Refinery Hydrogen Networks with Pressure Swing Adsorption Unit Configuration under Uncertainty: Economy and Flexibility Aspects. Industrial & Engineering Chemistry Research, 2022, 61, 7322-7334.	1.8	1
76	Dispersion Trajectory and Dynamics of Particles Injected from the Sidewall in the Gas–Solid Fluidized Bed. Industrial & Engineering Chemistry Research, 2020, 59, 18705-18716.	1.8	0