
C Laura Sayas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1722078/publications.pdf Version: 2024-02-01

CLAUDA SAVAS

#	Article	IF	CITATIONS
1	Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility. Current Biology, 2006, 16, 2259-2264.	3.9	159
2	The Neurite Retraction Induced by Lysophosphatidic Acid Increases Alzheimer's Disease-like Tau Phosphorylation. Journal of Biological Chemistry, 1999, 274, 37046-37052.	3.4	155
3	Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function. Molecular Biology of the Cell, 2006, 17, 4526-4542.	2.1	116
4	GSK-3 Is Activated by the Tyrosine Kinase Pyk2 during LPA1-mediated Neurite Retraction. Molecular Biology of the Cell, 2006, 17, 1834-1844.	2.1	97
5	Tau Structures. Frontiers in Aging Neuroscience, 2016, 8, 262.	3.4	86
6	MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. EMBO Journal, 2013, 32, 1293-1306.	7.8	80
7	ADNP/NAP dramatically increase microtubule end-binding protein–Tau interaction: a novel avenue for protection against tauopathy. Molecular Psychiatry, 2017, 22, 1335-1344.	7.9	77
8	Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by Gα ₁₂ and Gα ₁₃ by Rho-Independent and Rho-Dependent Mechanisms. Journal of Neuroscience, 2002, 22, 6863-6875.	3.6	76
9	The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. Journal of Neurochemistry, 2001, 78, 468-481.	3.9	68
10	Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 144-153.	2.4	68
11	Tau regulates the localization and function of Endâ€binding proteins 1 and 3 in developing neuronal cells. Journal of Neurochemistry, 2015, 133, 653-667.	3.9	66
12	Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism. Molecular Biology of the Cell, 2016, 27, 2924-2934.	2.1	60
13	Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study. Molecular Psychiatry, 2021, 26, 1619-1633.	7.9	60
14	Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex. Journal of Cell Science, 2013, 126, 4589-601.	2.0	31
15	Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE, 2019, 14, e0210864.	2.5	31
16	Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opinion on Therapeutic Targets, 2016, 20, 653-661.	3.4	24
17	Crosstalk between Axonal Classical Microtubule-Associated Proteins and End Binding Proteins during Axon Extension: Possible Implications in Neurodegeneration. Journal of Alzheimer's Disease, 2014, 40, S17-S22.	2.6	12
18	Regulation of EB1/3 proteins by classical MAPs in neurons. Bioarchitecture, 2014, 4, 1-5.	1.5	10

#	Article	IF	CITATIONS
19	Structural and Functional Relationships Between GSK3α and GSK3β Proteins. Current Biotechnology, 2012, 1, 80-87.	0.4	2
20	Tau regulates the localization and function of End Binding proteins in neuronal cells. SpringerPlus, 2015, 4, L16.	1.2	1