Cristian Covarrubias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721945/publications.pdf

Version: 2024-02-01

430874 477307 36 866 18 29 citations h-index g-index papers 36 36 36 1453 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Osteoconductive Effect of a Nanocomposite Membrane Treated with UV Radiation. Polymers, 2022, 14, 289.	4.5	O
2	Preparation of osteoinductive – Antimicrobial nanocomposite scaffolds based on poly (D,L-lactide-co-glycolide) modified with copper – Doped bioactive glass nanoparticles. Polymers and Polymer Composites, 2022, 30, 096739112210982.	1.9	1
3	Nanoparticles of Bioactive Glass Enhance Biodentine Bioactivity on Dental Pulp Stem Cells. Materials, 2021, 14, 2684.	2.9	5
4	Preparation and osteogenic properties of nanocomposite hydrogel beads loaded with nanometric bioactive glass particles. Biomedical Materials (Bristol), 2021, 16, 045043.	3.3	7
5	A comparative study on the microstructural and antibacterial properties of Laser - textured and SLA dental implants International Journal of Interdisciplinary Dentistry, 2021, 14, 222-225.	0.1	O
6	Interleukinâ€35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. Journal of Clinical Periodontology, 2020, 47, 676-688.	4.9	39
7	Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. Materials, 2020, 13, 2908.	2.9	18
8	Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dental Materials Journal, 2020, 39, 389-396.	1.8	19
9	Protective effect of inactivated blastoconidia in keratinocytes and human reconstituted epithelium againstC. albicansinfection. Medical Mycology, 2019, 57, 457-467.	0.7	1
10	Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Diseases, 2019, 25, 1866-1878.	3.0	23
11	In situ preparation and osteogenic properties of bionanocomposite scaffolds based on aliphatic polyurethane and bioactive glass nanoparticles. Materials Science and Engineering C, 2019, 96, 642-653.	7.3	13
12	Bionanocomposite scaffolds based on chitosan–gelatin and nanodimensional bioactive glass particles: In vitro properties and in vivo bone regeneration. Journal of Biomaterials Applications, 2018, 32, 1155-1163.	2.4	50
13	Facile synthesis of lithium carbonate nanoparticles with potential properties for bone repair applications. Materials Letters, 2018, 219, 205-208.	2.6	4
14	Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic & lt; i> Streptococcus mutans & lt; i> Dental Materials Journal, 2018, 37, 379-384.	1.8	54
15	Radiopacity and Chemical Assessment of New Commercial Calcium Silicate-Based Cements. International Journal of Odontostomatology, 2018, 12, 262-268.	0.1	8
16	Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies. Frontiers in Microbiology, 2017, 8, 1292.	3.5	24
17	Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles. Journal of Applied Oral Science, 2017, 25, 177-185.	1.8	22
18	Alendronate Functionalized Mesoporous Bioactive Glass Nanospheres. Materials, 2016, 9, 135.	2.9	17

#	Article	IF	Citations
19	Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites. Journal of Biomaterials Applications, 2016, 30, 1362-1372.	2.4	8
20	Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Applied Surface Science, 2016, 363, 286-295.	6.1	33
21	The Effect of the Nanoscale Structure of Nanobioceramics on Their (i>In Vitro (i>Bioactivity and Cell Differentiation Properties. Journal of Nanomaterials, 2015, 2015, 1-14.	2.7	16
22	Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Materials Science and Engineering C, 2014, 45, 146-153.	7.3	89
23	Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. Journal of Biomedical Materials Research - Part A, 2014, 102, 37-48.	4.0	42
24	Preparation and bioactive properties of novel boneâ€repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1672-1682.	3 . 4	33
25	Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 81-87.	1.8	27
26	Preparation of aluminophosphate/polyethylene nanocomposite membranes and their gas permeation properties. Journal of Membrane Science, 2010, 358, 33-42.	8.2	19
27	Catalytic activity during the preparation of PE/clay nanocomposites by <i>in situ</i> polymerization with metallocene catalysts. Journal of Applied Polymer Science, 2009, 113, 2368-2377.	2.6	29
28	Synthesis of nanosized ZSM-2 zeolite with potential acid catalytic properties. Microporous and Mesoporous Materials, 2009, 117, 118-125.	4.4	24
29	Catalytic performance of silica-aluminas synthesised with the help of chitosan biopolymer. Applied Catalysis A: General, 2009, 366, 269-274.	4.3	16
30	High catalytic activity of SBA-15-supported metallocene toward ethylene polymerization: The effect of the ordered porous structure of the support. Catalysis Communications, 2009, 10, 995-1001.	3.3	23
31	Preparation of CPB-modified FAU zeolite for the removal of tannery wastewater contaminants. Journal of Porous Materials, 2008, 15, 491-498.	2.6	14
32	Removal of trivalent chromium contaminant from aqueous media using FAU-type zeolite membranes. Journal of Membrane Science, 2008, 312, 163-173.	8.2	41
33	Ethylene polymerization using dealuminated ZSM-2 zeolite nanocrystals as an active metallocene catalyst support. Applied Catalysis A: General, 2008, 347, 223-233.	4.3	23
34	Natural Mordenite Derived Zeolites: Synthesis, Formation, and Their Evaluation in Cr(III) Removal from Tannery Wastewater. Environmental Engineering Science, 2007, 24, 1443-1456.	1.6	3
35	Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 2006, 88, 220-231.	4.4	83
36	Removal of chromium(III) from tannery effluents, using a system of packed columns of zeolite and activated carbon. Journal of Chemical Technology and Biotechnology, 2005, 80, 899-908.	3.2	38