
MarÃ-a Carla Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovative Toolbox for the Quantification of Drosophila C Virus, Drosophila A Virus, and Nora Virus. Journal of Molecular Biology, 2022, 434, 167308.	4.2	3
2	Innate immune pathways act synergistically to constrain RNA virus evolution in Drosophila melanogaster. Nature Ecology and Evolution, 2022, 6, 565-578.	7.8	10
3	The origin of RNA interference: Adaptive or neutral evolution?. PLoS Biology, 2022, 20, e3001715.	5.6	14
4	Chikungunya Virus Replication Rate Determines the Capacity of Crossing Tissue Barriers in Mosquitoes. Journal of Virology, 2021, 95, .	3.4	20
5	The Interplay Between Viruses and RNAi Pathways in Insects. Annual Review of Entomology, 2021, 66, 61-79.	11.8	47
6	Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathogens, 2021, 17, e1009110.	4.7	23
7	Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nature Communications, 2021, 12, 2290.	12.8	32
8	Interactions of the Insect-Specific Palm Creek Virus with Zika and Chikungunya Viruses in Aedes Mosquitoes. Microorganisms, 2021, 9, 1652.	3.6	10
9	Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Current Biology, 2020, 30, 3495-3506.e6.	3.9	88
10	Evidence For Long-Lasting Transgenerational Antiviral Immunity in Insects. Cell Reports, 2020, 33, 108506.	6.4	46
11	Tudor-SN Promotes Early Replication of Dengue Virus in the Aedes aegypti Midgut. IScience, 2020, 23, 100870.	4.1	12
12	Viral Infection and Stress Affect Protein Levels of Dicer 2 and Argonaute 2 in Drosophila melanogaster. Frontiers in Immunology, 2020, 11, 362.	4.8	7
13	Zika Virus Subgenomic Flavivirus RNA Generation Requires Cooperativity between Duplicated RNA Structures That Are Essential for Productive Infection in Human Cells. Journal of Virology, 2020, 94, .	3.4	27
14	Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses, 2020, 12, 468.	3.3	16
15	Interview: Maria arla Saleh. Cellular Microbiology, 2019, 21, e13061.	2.1	1
16	Manipulating Mosquito Tolerance for Arbovirus Control. Cell Host and Microbe, 2019, 26, 309-313.	11.0	30
17	RNA recombination at Chikungunya virus 3'UTR as an evolutionary mechanism that provides adaptability. PLoS Pathogens, 2019, 15, e1007706.	4.7	28
18	Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host and Microbe, 2018, 23, 353-365.e8.	11.0	124

MarÃa Carla Saleh

#	Article	IF	CITATIONS
19	Antiviral Immune Response and the Route of Infection in Drosophila melanogaster. Advances in Virus Research, 2018, 100, 247-278.	2.1	31
20	Immune priming and clearance of orally acquired RNA viruses in Drosophila. Nature Microbiology, 2018, 3, 1394-1403.	13.3	59
21	Imaging of viral neuroinvasion in the zebrafish reveals that Sindbis and chikungunya viruses favour different entry routes. DMM Disease Models and Mechanisms, 2017, 10, 847-857.	2.4	46
22	Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes. Journal of Virology, 2017, 91, .	3.4	81
23	Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 inAedes aegypti. Nucleic Acids Research, 2017, 45, gkw1368.	14.5	29
24	Mal de RÃo Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector. Frontiers in Plant Science, 2017, 8, 766.	3.6	13
25	Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut. PLoS Neglected Tropical Diseases, 2017, 11, e0006152.	3.0	41
26	Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications, 2016, 7, 12410.	12.8	199
27	piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4218-E4227.	7.1	83
28	R.I.P. dead bacteria, you will not be attacked. Nature Immunology, 2016, 17, 1138-1140.	14.5	0
29	Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annual Review of Virology, 2016, 3, 573-589.	6.7	62
30	Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Scientific Reports, 2016, 6, 27085.	3.3	36
31	Genomic Location of the Major Ribosomal Protein Gene Locus Determines Vibrio cholerae Global Growth and Infectivity. PLoS Genetics, 2015, 11, e1005156.	3.5	36
32	Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi. PLoS Pathogens, 2014, 10, e1004256.	4.7	75
33	Editorial overview: Host–microbe interactions: viruses: Viral sensing and activation of immunity. Current Opinion in Microbiology, 2014, 20, x-xi.	5.1	0
34	A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance. PLoS Genetics, 2014, 10, e1004163.	3.5	35
35	Alphavirus Mutator Variants Present Host-Specific Defects and Attenuation in Mammalian and Insect Models. PLoS Pathogens, 2014, 10, e1003877.	4.7	94
36	RNAi and antiviral defense in Drosophila: Setting up a systemic immune response. Developmental and Comparative Immunology, 2014, 42, 85-92.	2.3	62

MARÃA CARLA SALEH

#	Article	IF	CITATIONS
37	RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nature Immunology, 2013, 14, 396-403.	14.5	225
38	Of Insects and Viruses. Advances in Insect Physiology, 2012, 42, 1-36.	2.7	19
39	The DNA virus Invertebrate iridescent virus 6 is a target of the <i>Drosophila</i> RNAi machinery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3604-13.	7.1	132
40	Living with the enemy: viral persistent infections from a friendly viewpoint. Current Opinion in Microbiology, 2012, 15, 531-537.	5.1	48
41	Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells. PLoS ONE, 2012, 7, e30861.	2.5	184
42	<i>In Silico</i> Reconstruction of Viral Genomes from Small RNAs Improves Virus-Derived Small Interfering RNA Profiling. Journal of Virology, 2011, 85, 11016-11021.	3.4	48
43	dsRNA Uptake in Adult Drosophila. Methods in Molecular Biology, 2011, 721, 253-263.	0.9	1
44	Viral Small RNA Cloning and Sequencing. Methods in Molecular Biology, 2011, 721, 107-122.	0.9	11
45	RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19390-19395.	7.1	126
46	Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 2009, 458, 346-350.	27.8	243
47	The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 2006, 8, 793-802.	10.3	470
48	Oligodendrocyte differentiation is increased in transferrin transgenic mice. Journal of Neuroscience Research, 2006, 83, 403-414.	2.9	33
49	The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes and Development, 2006, 20, 2985-2995.	5.9	511
50	The Poliovirus Replication Machinery Can Escape Inhibition by an Antiviral Drug That Targets a Host Cell Protein. Journal of Virology, 2004, 78, 3378-3386.	3.4	52
51	Transgenic mice as a model to study the regulation of human transferrin expression in Sertoli cells. Human Reproduction, 2004, 19, 1300-1307.	0.9	18
52	RNA silencing in viral infections: insights from poliovirus. Virus Research, 2004, 102, 11-17.	2.2	39
53	Expression and secretion of human apolipoprotein A-I in the heart. FEBS Letters, 2004, 557, 39-44.	2.8	11
54	Myelination and motor coordination are increased in transferrin transgenic mice. Journal of Neuroscience Research, 2003, 72, 587-594.	2.9	57

#	Article	IF	CITATIONS
55	Alternative splicing in the brain of mice and rats generates transferrin transcripts lacking, as in humans, the signal peptide sequence. Neurochemical Research, 2002, 27, 1459-1463.	3.3	10
56	Alternative splicing prevents transferrin secretion during differentiation of a human oligodendrocyte cell line. Journal of Neuroscience Research, 2000, 61, 388-395.	2.9	74
57	A sequence similar to bacterial transposable IS elements present in the 5' untranslated region of the bovine butanediol dehydrogenase cDNA. Genetica, 1999, 105, 233-238.	1.1	0