
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Advanced Materials, 2015, 27, 4744-4751.	11.1	667
2	Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Letters, 2015, 15, 5240-5247.	4.5	527
3	Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Advanced Functional Materials, 2014, 24, 5671-5678.	7.8	297
4	Stretchable and Transparent Kirigami Conductor of Nanowire Percolation Network for Electronic Skin Applications. Nano Letters, 2019, 19, 6087-6096.	4.5	276
5	High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nature Communications, 2016, 7, 10600.	5.8	244
6	Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability. ACS Applied Materials & Interfaces, 2016, 8, 15449-15458.	4.0	243
7	Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Advanced Materials, 2020, 32, e1905527.	11.1	221
8	Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Scientific Reports, 2017, 7, 41981.	1.6	212
9	Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. Advanced Functional Materials, 2018, 28, 1801847.	7.8	198
10	High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Letters, 2017, 17, 4339-4346.	4.5	196
11	Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. Scientific Reports, 2016, 6, 30759.	1.6	166
12	Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. ACS Applied Materials & Interfaces, 2016, 8, 11575-11582.	4.0	160
13	Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. Journal of Materials Chemistry A, 2016, 4, 11365-11371.	5.2	154
14	Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Experiments in Fluids, 2004, 37, 105-119.	1.1	153
15	A deep-learned skin sensor decoding the epicentral human motions. Nature Communications, 2020, 11, 2149.	5.8	148
16	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	11.1	131
17	Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Experiments in Fluids, 2004, 37, 811-824.	1.1	129
18	Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction. Advanced Materials, 2015, 27, 6397-6403.	11.1	125

#	Article	IF	CITATIONS
19	Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 2018, 6, 7445-7461.	2.7	125
20	Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets. Langmuir, 2007, 23, 2953-2960.	1.6	101
21	A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale, 2017, 9, 1978-1985.	2.8	101
22	Plasmonicâ€Tuned Flash Cu Nanowelding with Ultrafast Photochemicalâ€Reducing and Interlocking on Flexible Plastics. Advanced Functional Materials, 2017, 27, 1701138.	7.8	98
23	Highly Stable Niâ€Based Flexible Transparent Conducting Panels Fabricated by Laser Digital Patterning. Advanced Functional Materials, 2019, 29, 1806895.	7.8	97
24	Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nature Communications, 2021, 12, 4658.	5.8	94
25	Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale, 2019, 11, 20356-20378.	2.8	90
26	How to Reliably Determine the Complex Refractive Index (RI) of Graphene by Using Two Independent Measurement Constraints. Scientific Reports, 2014, 4, 6364.	1.6	89
27	Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. ACS Nanoscience Au, 2022, 2, 64-92.	2.0	86
28	Experimental verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy. Physical Review E, 2005, 72, 042101.	0.8	84
29	Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design. ACS Nano, 2015, 9, 6059-6068.	7.3	82
30	Full-Field Subwavelength Imaging Using a Scattering Superlens. Physical Review Letters, 2014, 113, 113901.	2.9	81
31	Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions. ACS Applied Nano Materials, 2019, 2, 790-798.	2.4	80
32	Graphene as a material for energy generation and control: Recent progress in the control of graphene thermal conductivity by graphene defect engineering. Materials Today Energy, 2019, 12, 431-442.	2.5	76
33	Three-dimensional micro-PTV using deconvolution microscopy. Experiments in Fluids, 2006, 40, 491-499.	1.1	71
34	Stretchable Skinâ€Like Cooling/Heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality. Advanced Functional Materials, 2020, 30, 1909171.	7.8	71
35	Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nature Materials, 2021, 20, 100-107.	13.3	71
36	All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. Journal of Materials Chemistry A, 2015, 3, 8339-8345.	5.2	68

#	Article	IF	CITATIONS
37	An efficient reduced graphene-oxide filter for PM _{2.5} removal. Journal of Materials Chemistry A, 2018, 6, 16975-16982.	5.2	67
38	In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes. Nano Letters, 2017, 17, 2361-2366.	4.5	66
39	Transparent wearable three-dimensional touch by self-generated multiscale structure. Nature Communications, 2019, 10, 2582.	5.8	64
40	A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Advanced Functional Materials, 2021, 31, 2007772.	7.8	64
41	Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering. Advanced Electronic Materials, 2016, 2, 1600277.	2.6	63
42	Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Science Advances, 2022, 8, .	4.7	63
43	Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor. RSC Advances, 2016, 6, 57434-57440.	1.7	60
44	Flexible and Transparent Cu Electronics by Lowâ€Temperature Acidâ€Assisted Laser Processing of Cu Nanoparticles. Advanced Materials Technologies, 2017, 2, 1600222.	3.0	59
45	Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film. International Journal of Heat and Mass Transfer, 2005, 48, 265-278.	2.5	56
46	Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world. Journal of Materials Chemistry A, 2020, 8, 8281-8291.	5.2	55
47	Recent advances in liquid-metal-based wearable electronics and materials. IScience, 2021, 24, 102698.	1.9	54
48	Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. Nanomaterials, 2022, 12, 221.	1.9	54
49	A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 147-161.	2.7	53
50	Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. Journal of Materials Chemistry C, 2017, 5, 791-798.	2.7	52
51	Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging. Small, 2015, 11, 3007-3016.	5.2	48
52	Thermally Controlled, Active Imperceptible Artificial Skin in Visibleâ€ŧoâ€Infrared Range. Advanced Functional Materials, 2020, 30, 2003328.	7.8	47
53	Transparent Air Filters with Active Thermal Sterilization. Nano Letters, 2022, 22, 524-532.	4.5	47
54	A Transparent and Flexible Capacitiveâ€Force Touch Pad from Highâ€Aspectâ€Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods, 2018, 2, 1800077.	4.6	45

#	Article	IF	CITATIONS
55	Directional Shape Morphing Transparent Walking Soft Robot. Soft Robotics, 2019, 6, 760-767.	4.6	45
56	Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Advanced Materials Technologies, 2020, 5, 1900939.	3.0	44
57	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	7.8	43
58	An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosensors and Bioelectronics, 2007, 22, 2585-2590.	5.3	41
59	Opto-Electric Cellular Biosensor Using Optically Transparent Indium Tin Oxide (ITO) Electrodes. Sensors, 2008, 8, 3257-3270.	2.1	39
60	Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanced Intelligent Systems, 2021, 3, 2000157.	3.3	38
61	Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires. ACS Nano, 2017, 11, 12311-12317.	7.3	36
62	Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries. Journal of Power Sources, 2017, 366, 241-248.	4.0	36
63	Highly Customizable Transparent Silver Nanowire Patterning via Inkjetâ€Printed Conductive Polymer Templates Formed on Various Surfaces. Advanced Materials Technologies, 2020, 5, 2000042.	3.0	35
64	Nanoscale Heaters: Single Nanowire Resistive Nanoâ€heater for Highly Localized Thermoâ€Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth (Small 24/2014). Small, 2014, 10, 5014-5014.	5.2	34
65	Metal Nanowire-Coated Metal Woven Mesh for High-Performance Stretchable Transparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 40905-40913.	4.0	34
66	Biocompatible Costâ€Effective Electrophysiological Monitoring with Oxidationâ€Free Cu–Au Core–Shell Nanowire. Advanced Materials Technologies, 2020, 5, 2000661.	3.0	33
67	Functional Materials and Devices for XR (VR/AR/MR) Applications. Advanced Functional Materials, 2021, 31, 2106546.	7.8	32
68	Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors. Experiments in Fluids, 2010, 48, 721-736.	1.1	29
69	Semipermanent Copper Nanowire Network with an Oxidationâ€Proof Encapsulation Layer. Advanced Materials Technologies, 2019, 4, 1800422.	3.0	29
70	Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy, 2022, 95, 107002.	8.2	29
71	Two orders of magnitude suppression of graphene's thermal conductivity by heavy dopants (Si). Carbon, 2018, 138, 98-107.	5.4	28
72	Thermoâ€Haptic Materials and Devices for Wearable Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2007376.	7.8	28

#	Article	IF	CITATIONS
73	Microscale Heat and Mass Transport of Evaporating Thin Film of Binary Mixture. Journal of Thermophysics and Heat Transfer, 2006, 20, 320-326.	0.9	27
74	Biohybrid Actuators for Soft Robotics: Challenges in Scaling Up. Actuators, 2020, 9, 96.	1.2	27
75	Electrochemical sensing of mercury ions in electrolyte solutions by nitrogen-doped graphene quantum dot electrodes at ultralow concentrations. Journal of Molecular Liquids, 2020, 302, 112593.	2.3	27
76	High-temperature, thin, flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide. Journal of Materials Chemistry C, 2021, 9, 5652-5661.	2.7	27
77	Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. Science Advances, 2019, 5, eaav4916.	4.7	26
78	Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox. Nano-Micro Letters, 2022, 14, 49.	14.4	26
79	Surface elasticity and charge concentration-dependent endothelial cell attachment to copolymer polyelectrolyte hydrogel. Acta Biomaterialia, 2009, 5, 144-151.	4.1	25
80	How to optically count graphene layers. Optics Letters, 2012, 37, 3765.	1.7	25
81	Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection. ACS Nano, 2021, 15, 15730-15740.	7.3	25
82	Significant thermoelectric conversion efficiency enhancement of single layer graphene with substitutional silicon dopants. Nano Energy, 2021, 87, 106188.	8.2	25
83	Thermally stable Ag@ZrO 2 core-shell via atomic layer deposition. Materials Letters, 2017, 188, 372-374.	1.3	24
84	Effect of graphene-substrate conformity on the in-plane thermal conductivity of supported graphene. Carbon, 2017, 125, 39-48.	5.4	24
85	Metallic Nanowire Coupled CsPbBr ₃ Quantum Dots Plasmonic Nanolaser. Advanced Functional Materials, 2021, 31, 2102375.	7.8	23
86	Non-enzymatic electrochemical detection of hydrogen peroxide on highly amidized graphene quantum dot electrodes. Applied Surface Science, 2020, 528, 146936.	3.1	22
87	Binary Fluid Mixture and Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus. Journal of Heat Transfer, 2003, 125, 867-874.	1.2	21
88	Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry (μ-PIV). Optics and Lasers in Engineering, 2006, 44, 208-223.	2.0	21
89	Label-free visualization of microfluidic mixture concentration fields using a surface plasmon resonance (spr) reflectance imaging. Experiments in Fluids, 2006, 41, 905-916.	1.1	21
90	Evolvable Skin Electronics by In Situ and In Operando Adaptation. Advanced Functional Materials, 2022, 32, 2106329.	7.8	21

#	Article	IF	CITATIONS
91	Full-field and real-time surface plasmon resonance imaging thermometry. Optics Letters, 2007, 32, 3456.	1.7	20
92	Review of the Multi-scale Nano-structure Approach to the Development of High Efficiency Solar Cells. Smart Science, 2014, 2, 54-62.	1.9	20
93	Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids. Optics Letters, 2010, 35, 393.	1.7	19
94	Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties. Ultrasonics Sonochemistry, 2015, 22, 35-40.	3.8	19
95	Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes. Nanomaterials, 2018, 8, 557.	1.9	19
96	Optoelectric biosensor using indium-tin-oxide electrodes. Optics Letters, 2007, 32, 1405.	1.7	17
97	Unveiling Hidden Complex Cavities Formed during Nanocrystalline Self-Assembly. Langmuir, 2009, 25, 1881-1884.	1.6	17
98	Heat flow diversion in supported graphene nanomesh. Carbon, 2017, 123, 45-53.	5.4	17
99	Hierarchically Structured Conductive Polymer Binders with Silver Nanowires for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17340-17347.	4.0	17
100	A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids. Nanoscale Research Letters, 2011, 6, 361.	3.1	16
101	ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation. Nanomaterials, 2018, 8, 323.	1.9	16
102	Energy Harvesting Untethered Soft Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002286.	3.9	16
103	Real-Time and Full-Field Detection of Near-Wall Salinity Using Surface Plasmon Resonance Reflectance. Analytical Chemistry, 2007, 79, 5418-5423.	3.2	15
104	Selective Thermochemical Growth of Hierarchical ZnO Nanowire Branches on Silver Nanowire Backbone Percolation Network Heaters. Journal of Physical Chemistry C, 2017, 121, 22542-22549.	1.5	15
105	Electrocatalytic Oxidation of Glucose on Boron and Nitrogen Codoped Graphene Quantum Dot Electrodes in Alkali Media. Catalysts, 2021, 11, 101.	1.6	15
106	Surface plasmon resonance reflectance imaging technique for near-field (~100Ânm) fluidic characterization. Experiments in Fluids, 2010, 48, 547-564.	1.1	14
107	Control and Manipulation of Nano Cracks Mimicking Optical Wave. Scientific Reports, 2015, 5, 17292.	1.6	14
108	Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Nanomaterials, 2018, 8, 645.	1.9	14

#	Article	IF	CITATIONS
109	Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	14
110	From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates. Advanced Materials, 2021, 33, e2008434.	11.1	13
111	Effects of mass and interaction mismatches on in-plane and cross-plane thermal transport of Si-doped graphene. International Journal of Heat and Mass Transfer, 2021, 169, 120979.	2.5	13
112	Near-Field Thermometry Sensor Based on the Thermal Resonance of a Microcantilever in Aqueous Medium. Sensors, 2007, 7, 3156-3165.	2.1	12
113	Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR). Materials, 2015, 8, 4332-4343.	1.3	12
114	Selective electro — thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 173-177.	2.7	11
115	Laser-Induced Crystalline-Phase Transformation for Hematite Nanorod Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 48917-48927.	4.0	11
116	Photoreduction Synthesis of Hierarchical Hematite/Silver Nanostructures for Photoelectrochemical Water Splitting. Energy Technology, 2016, 4, 271-277.	1.8	10
117	Boosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires. International Journal of Heat and Mass Transfer, 2019, 134, 547-553.	2.5	10
118	Interfacial Thermal Contact Conductance inside the Graphene–Bi ₂ Te ₃ Heterostructure. Advanced Materials Interfaces, 2019, 6, 1900275.	1.9	9
119	Significant thermal conductivity reduction of CVD graphene with relatively low hole densities fabricated by focused ion beam processing. Applied Physics Letters, 2019, 114, .	1.5	9
120	Wearable Temperature Sensors: Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration (Adv. Mater. 2/2020). Advanced Materials, 2020, 32, 2070014.	11.1	9
121	Highly Controlled Nanoporous Ag Electrode by Vaporization Control of 2-Ethoxyethanol for a Flexible Supercapacitor Application. Langmuir, 2017, 33, 1854-1860.	1.6	8
122	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	1.7	8
123	Modeling Alkaline Liquid Metal (Na) Evaporating Thin Films Using Both Retarded Dispersion and Electronic Force Components. Journal of Heat Transfer, 2009, 131, .	1.2	7
124	Thermal conductivity reduction of multilayer graphene with fine grain sizes. JMST Advances, 2019, 1, 191-195.	0.6	7
125	Operation Range-Optimized Silver Nanowire Through Junction Treatment. Electronic Materials Letters, 2020, 16, 491-497.	1.0	7
126	Effect of disjoining pressure (Î) on multi-scale modeling for evaporative liquid metal (Na) capillary. International Journal of Heat and Mass Transfer, 2014, 78, 137-149.	2.5	5

#	Article	IF	CITATIONS
127	Measurements of the minimum elevation of nano-particles by 3D nanoscale tracking using ratiometric evanescent wave imaging. Experiments in Fluids, 2006, 41, 173-183.	1.1	4
128	Wetting of nanofluids with nanoparticles of opposite surface potentials on pristine CVD graphene. Experiments in Fluids, 2016, 57, 1.	1.1	4
129	Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Materials, 2018, 11, 2511.	1.3	4
130	Facile fabrication of flexible metal grid transparent electrode using inkjet-printed dot array as sacrificial layer. Scientific Reports, 2022, 12, 1572.	1.6	4
131	Flexible Electronics: Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics (Adv. Mater. 33/2014). Advanced Materials, 2014, 26, 5888-5888.	11.1	3
132	Wearable Electronics: Biocompatible Costâ€Effective Electrophysiological Monitoring with Oxidationâ€Free Cu–Au Core–Shell Nanowire (Adv. Mater. Technol. 12/2020). Advanced Materials Technologies, 2020, 5, 2070073.	3.0	3
133	Imperceptible Soft Robotics: Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics (Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170147.	11.1	3
134	Nonintrusive measurements of mixture concentration fields by analyzing diffraction image patterns (point spread function) of nanoparticles. Experiments in Fluids, 2010, 49, 183-191.	1.1	2
135	Nanocomposites: Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite (Adv. Funct. Mater. 36/2014). Advanced Functional Materials, 2014, 24, 5618-5618.	7.8	2
136	Nanowires: Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction (Adv. Mater. 41/2015). Advanced Materials, 2015, 27, 6396-6396.	11.1	2
137	The Effect of Particle Morphology on Unipolar Diffusion Charging of Silver Nanowires. Aerosol Science and Technology, 2015, 49, 290-298.	1.5	2
138	A Review on Investigation of Graphene Thermal Property: Recent Development in Measurement Techniques. Multiscale Science and Engineering, 2019, 1, 267-279.	0.9	2
139	Silver Nanowire Patterning: Highly Customizable Transparent Silver Nanowire Patterning via Inkjetâ€Printed Conductive Polymer Templates Formed on Various Surfaces (Adv. Mater. Technol.) Tj ETQq1 1 0.	78 4. @14 rg	gBЪ/Overlock
140	Facile optical quantification of mercury ion concentration using graphene quantum dot coated filter paper disks. Materials Chemistry and Physics, 2021, 260, 124168.	2.0	2
141	Evolvable Skin Electronics by In Situ and In Operando Adaptation (Adv. Funct. Mater. 4/2022). Advanced Functional Materials, 2022, 32, .	7.8	2
142	Special section on the 13th International Symposium on Flow Visualization. Experiments in Fluids, 2010, 48, 545-546.	1.1	1
143	Maskless digital manufacturing of organic thin film transistor by femtosecond laser direct patterning. , 2014, , .		1
144	Cavity Microball Lenses: Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging (Small 25/2015). Small, 2015, 11, 3006-3006.	5.2	1

#	Article	IF	CITATIONS
145	Flexible and highly sensitive multi-dimensional strain sensor with intersecting metal nanowire arrays. , 2017, , .		1
146	Artificial Thermal Sensation: Stretchable Skin‣ike Cooling/Heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality (Adv. Funct. Mater. 29/2020). Advanced Functional Materials, 2020, 30, 2070196.	7.8	1
147	Preface for the Soft and Green Manufacturing and Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 743-744.	2.7	1
148	Development of Low-Shrink Epoxy Putty to Solve Appearance-Quality Defects of Carbon-Fiber-Reinforced Plastic Automotive Exterior Parts. Materials, 2021, 14, 6419.	1.3	1
149	Heat Transfer Photogallery. Journal of Heat Transfer, 2004, 126, 493-506.	1.2	0
150	Heat Transfer Photogallery. Journal of Heat Transfer, 2005, 127, 798-798.	1.2	0
151	Heat Transfer Photogallery. Journal of Heat Transfer, 2006, 128, 733-733.	1.2	0
152	Low temperature laser processing for the application in flexible & stretchable electronics. , 2015, ,		0
153	Heat Transfer Gallery. Journal of Heat Transfer, 2015, 137, .	1.2	0
154	Heat Transfer Photogallery. Journal of Heat Transfer, 2015, 137, .	1.2	0
155	Call for Photographs. Journal of Heat Transfer, 2016, 138, .	1.2	0
156	Recent progress in laser assisted digital selective nanomaterial processing. , 2017, , .		0
157	70â€2: Low Temperature Process and Material Development for Flexible/Stretchable Transparent Conductor. Digest of Technical Papers SID International Symposium, 2020, 51, 1044-1047.	0.1	Ο
158	Digital Laser Micropainting: Digital Laser Micropainting for Reprogrammable Optoelectronic Applications (Adv. Funct. Mater. 1/2021). Advanced Functional Materials, 2021, 31, 2170002.	7.8	0
159	Crack Programming: From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates (Adv. Mater. 22/2021). Advanced Materials, 2021, 33, 2170175.	11.1	Ο
160	Expression of NUANCE, a potential novel oncogene, is inhibited by nonsteroidal antiâ€inflammatory drugs (NSAIDs) in human colorectal cancer cells. FASEB Journal, 2008, 22, 1031.1.	0.2	0
161	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	1.7	Ο
162	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures (Adv. Funct. Mater. 16/2022). Advanced Functional Materials, 2022, 32, .	7.8	0