Javier Monsalve-Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries. International Journal of Engine Research, 2022, 23, 1691-1707.	1.4	11
2	EGR cylinder deactivation strategy to accelerate the warm-up and restart processes in a Diesel engine operating at cold conditions. International Journal of Engine Research, 2022, 23, 614-623.	1.4	1
3	Energy assessment of an electrically heated catalyst in a hybrid RCCI truck. Energy, 2022, 238, 121681.	4.5	12
4	Energy sustainability in the transport sector using synthetic fuels in series hybrid trucks with RCCI dual-fuel engine. Fuel, 2022, 308, 122024.	3.4	9
5	Optimization of low carbon fuels operation on a CI engine under a simplified driving cycle for transportation de-fossilization. Fuel, 2022, 310, 122338.	3.4	9
6	Thermal runaway evaluation and thermal performance enhancement of a lithium-ion battery coupling cooling system and battery sub-models. Applied Thermal Engineering, 2022, 202, 117884.	3.0	31
7	Life cycle COâ,, footprint reduction comparison of hybrid and electric buses for bus transit networks. Applied Energy, 2022, 308, 118354.	5.1	20
8	Influence of environmental conditions in the battery thermal runaway process of different chemistries: Thermodynamic and optical assessment. International Journal of Heat and Mass Transfer, 2022, 184, 122381.	2.5	20
9	Intelligent charge compression ignition combustion for range extender medium duty applications. Renewable Energy, 2022, 187, 671-687.	4.3	1
10	Pathways to achieve future CO2 emission reduction targets for bus transit networks. Energy, 2022, 244, 123177.	4.5	15
11	Parametric assessment of the effect of oxygenated low carbon fuels in a light-duty compression ignition engine. Fuel Processing Technology, 2022, 229, 107199.	3.7	10
12	Impact of low carbon fuels (LCF) on the fuel efficiency and NOx emissions of a light-duty series hybrid commercial delivery vehicle. Fuel, 2022, 321, 124035.	3.4	7
13	Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels. Science of the Total Environment, 2022, 844, 157241.	3.9	6
14	Advantages of using a cooler bypass in the low-pressure exhaust gas recirculation line of a compression ignition diesel engine operating at cold conditions. International Journal of Engine Research, 2021, 22, 1624-1635.	1.4	9
15	Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-fuel combustion. Fuel, 2021, 287, 119548.	3.4	26
16	High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions. Applied Energy, 2021, 282, 116078.	5.1	24
17	High-pressure exhaust gas recirculation line condensation model of an internal combustion diesel engine operating at cold conditions. International Journal of Engine Research, 2021, 22, 407-416.	1.4	15
18	Effects of fuel injection parameters on premixed charge compression ignition combustion and emission characteristics in a medium-duty compression ignition diesel engine. International Journal of Engine Research, 2021, 22, 443-455.	1.4	21

#	Article	IF	CITATIONS
19	Impacts of the exhaust gas recirculation (EGR) combined with the regeneration mode in a compression ignition diesel engine operating at cold conditions. International Journal of Engine Research, 2021, 22, 3548-3557.	1.4	8
20	Extending the potential of the dual-mode dual-fuel combustion towards the prospective EURO VII emissions limits using gasoline and OMEx. Energy Conversion and Management, 2021, 233, 113927.	4.4	17
21	Combining in-cylinder pressure and 1D simulation tools to understand the combustion characteristics of natural gas in pre-chamber ignition systems for energy generation. Energy Conversion and Management, 2021, 240, 114262.	4.4	5
22	Emissions reduction by using e-components in 48ÂV mild hybrid trucks under dual-mode dual-fuel combustion. Applied Energy, 2021, 299, 117305.	5.1	7
23	An optical investigation of thermal runaway phenomenon under thermal abuse conditions. Energy Conversion and Management, 2021, 246, 114663.	4.4	26
24	Computational optimization of the piston bowl geometry for the different combustion regimes of the dual-mode dual-fuel (DMDF) concept through an improved genetic algorithm. Energy Conversion and Management, 2021, 246, 114658.	4.4	13
25	Energy management optimization for a power-split hybrid in a dual-mode RCCI-CDC engine. Applied Energy, 2021, 302, 117525.	5.1	9
26	Evaluating OMEx combustion towards stoichiometric conditions in a compression ignition engine. Fuel, 2021, 303, 121273.	3.4	12
27	Impact of the hybrid electric architecture on the performance and emissions of a delivery truck with a dual-fuel RCCI engine. Applied Energy, 2021, 301, 117494.	5.1	12
28	Use of EGR e-pump for Dual-Mode Dual-Fuel engines in mild hybrid architectures. Energy Conversion and Management, 2021, 247, 114701.	4.4	3
29	Development of a fast-virtual CFR engine model and its use on autoignition studies. Fuel Processing Technology, 2021, 224, 107031.	3.7	6
30	Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 2020, 164, 114430.	3.0	51
31	Potential of a two-stage variable compression ratio downsized spark ignition engine for passenger cars under different driving conditions. Energy Conversion and Management, 2020, 203, 112251.	4.4	10
32	Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles. Renewable Energy, 2020, 150, 58-77.	4.3	42
33	Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis. Applied Energy, 2020, 279, 115729.	5.1	16
34	Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels. Fuel, 2020, 280, 118670.	3.4	16
35	Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector. Energy Conversion and Management, 2020, 224, 113320.	4.4	38
36	1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion. Energies, 2020, 13, 3734.	1.6	39

#	Article	IF	CITATIONS
37	OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel, 2020, 275, 117898.	3.4	33
38	Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 2020, 216, 112953.	4.4	30
39	Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy, 2020, 272, 115191.	5.1	24
40	Potential of using OMEx as substitute of diesel in the dual-fuel combustion mode to reduce the global CO2 emissions. Transportation Engineering, 2020, 1, 100001.	2.3	24
41	Computational optimization of the dual-mode dual-fuel concept through genetic algorithm at different engine loads. Energy Conversion and Management, 2020, 208, 112577.	4.4	20
42	Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, 2020, 195, 117039.	4.5	42
43	Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 2019, 253, 113622.	5.1	35
44	Application of a oneâ€dimensional spray model to teach diffusion flame fundamentals for engineering students. Computer Applications in Engineering Education, 2019, 27, 1202-1216.	2.2	2
45	Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 2019, 201, 112137.	4.4	18
46	Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 2019, 199, 111987.	4.4	57
47	Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles. Applied Energy, 2019, 254, 113691.	5.1	37
48	Octane number influence on combustion and performance parameters in a Dual-Mode Dual-Fuel engine. Fuel, 2019, 258, 116140.	3.4	13
49	Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 2019, 20, 46-57.	1.4	21
50	Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 2019, 196, 18-31.	4.4	26
51	Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering, 2019, 1, 100001.	2.2	25
52	Teaching combustion thermochemistry with an interactive Matlab application. Computer Applications in Engineering Education, 2019, 27, 642-652.	2.2	2
53	Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 2019, 190, 73-90.	4.4	66
54	Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 2019, 184, 327-337.	4.4	39

#	Article	IF	CITATIONS
55	Performance and emissions of a series hybrid vehicle powered by a gasoline partially premixed combustion engine. Applied Thermal Engineering, 2019, 150, 564-575.	3.0	23
56	Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 2018, 136, 161-168.	3.0	35
57	Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 2018, 159, 85-95.	4.4	48
58	Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 2018, 157, 277-287.	4.4	49
59	An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 2018, 174, 112-121.	1.9	104
60	Redesign and Characterization of a Single-Cylinder Optical Research Engine to Allow Full Optical Access and Fast Cleaning during Combustion Studies. Experimental Techniques, 2018, 42, 55-68.	0.9	4
61	Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences (Switzerland), 2018, 8, 1472.	1.3	22
62	Potential of 1-octanol and di-n-butyl ether (DNBE) to improve the performance and reduce the emissions of a direct injected compression ignition diesel engine. Energy Conversion and Management, 2018, 177, 563-571.	4.4	41
63	Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 2018, 176, 1-10.	4.4	24
64	Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 2018, 140, 62-72.	3.0	22
65	Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 2018, 157, 19-30.	4.5	72
66	Influence of Direct-Injected Fuel Properties on Performance and Emissions from a Light-Duty Diesel Engine Running Under RCCI Combustion Mode. , 2018, , .		4
67	Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 2018, 144, 424-436.	3.0	56
68	Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 2017, 136, 142-151.	4.4	120
69	Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 2017, 18, 66-80.	1.4	41
70	An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline. Energy Conversion and Management, 2017, 140, 98-108.	4.4	69
71	Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 2017, 120, 138-149.	3.0	53
72	Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 2017, 149, 263-274.	4.4	56

#	Article	IF	CITATIONS
73	Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management, 2017, 149, 192-205.	4.4	68
74	Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences (Switzerland), 2017, 7, 36.	1.3	49
75	An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 2016, 123, 381-391.	4.4	64
76	Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 2016, 98, 64-77.	4.5	75
77	Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Conversion and Management, 2016, 108, 243-254.	4.4	50
78	Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity) Tj ETQq0 0 0 rgBT /Ov 2015, 90, 1261-1271.	verlock 10 4.5	Tf 50 547 To 122
79	An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 2015, 103, 1019-1030.	4.4	75
80	Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 2015, 99, 193-209.	4.4	150
81	The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 2015, 159, 952-961.	3.4	123
82	The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 2014, 78, 854-868.	4.5	97
83	Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 2014, 134, 90-101.	5.1	86
84	Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 2014, 129, 1-9.	5.1	51
85	Evaluation of Emissions and Performances from Partially Premixed Compression Ignition Combustion using Gasoline and Spark Assistance. , 2013, , .		12
86	Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load. SAE International Journal of Engines, 0, 7, 1875-1887.	0.4	16
87	Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds. SAE International Journal of Engines, 0, 10, 2382-2391.	0.4	11
88	OMEx Fuel and RCCI Combustion to Reach Engine-Out Emissions Beyond the Current EURO VI Legislation. , 0, , .		6
89	Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry. , 0, , .		6
90	Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI		5

Diesel-Gasoline Combustion., 0,,.

#	Article	IF	CITATIONS
91	Dual-Fuel Ethanol-Diesel Technology Applied in Mild and Full Hybrid Powertrains. , 0, , .		2
92	Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine. , 0, , .		4
93	CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 731-743.	2.0	1
94	Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions. , 0, , .		0
95	Combining DMDF and Hybrid Powertrains: A Look on the Effects of Different Battery Modelling Approaches. , 0, , .		0
96	Identifying Key Aspects of Thermal Runaway Modelling for Lithium-ion Battery Cells. SAE International Journal of Advances and Current Practices in Mobility, 0, 4, 1964-1976.	2.0	4
97	Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range. , 0, , .		1