
Haolin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Applied Thermal Engineering, 2017, 112, 296-303.	6.0	56
2	Filtration Combustion of Methane in High-Porosity Micro-Fibrous Media. Combustion Science and Technology, 2009, 181, 654-669.	2.3	47
3	OH-PLIF investigation of wall effects on the flame quenching in a slit burner. Proceedings of the Combustion Institute, 2013, 34, 3379-3386.	3.9	34
4	Study on the combustion characteristics of non-premixed hydrogen micro-jet flame and the thermal interaction with solid micro tube. International Journal of Hydrogen Energy, 2017, 42, 3853-3862.	7.1	30
5	General modeling and numerical simulation of the burning characteristics of porous chars. Combustion and Flame, 2012, 159, 2457-2465.	5.2	25
6	Heterogeneous reaction characteristics and their effects on homogeneous combustion of methane/air mixture in micro channels I. Thermal analysis. Fuel, 2018, 234, 20-29.	6.4	21
7	Numerical Study On Combustion Characteristics Of Partially Premixed Tubular Flame Burner For DME. Combustion Science and Technology, 2019, 191, 435-452.	2.3	20
8	OH-PLIF investigation of Y2O3-ZrO2 coating improving flame stability in a narrow channel. Chemical Engineering Journal, 2021, 405, 126708.	12.7	16
9	A Surface Analysis-Based Investigation of the Effect of Wall Materials on Flame Quenching. Combustion Science and Technology, 2011, 183, 444-458.	2.3	15
10	Stabilization characteristics and mechanisms in a novel tubular flame burner with localized stratified property. Energy, 2020, 197, 117235.	8.8	15
11	Interactions between the flame and different coatings in a slit burner. Fuel, 2019, 253, 420-430.	6.4	14
12	Comparative Study on the Combustion Performance in Localized Stratified and Rapidly Mixed Swirling Tubular Flame Burners. Combustion Science and Technology, 2021, 193, 1444-1462.	2.3	12
13	Heterogeneous reaction characteristics and its effects on homogeneous combustion of methane/air mixture in microchannels II. Chemical analysis. Fuel, 2019, 235, 923-932.	6.4	11
14	Flow Field and Combustion Characteristics in Localized Stratified Swirling Tubular Flame Burner: Numerical Investigation. Combustion Science and Technology, 2020, 192, 915-932.	2.3	10
15	Enhancing the flame stability in a slot burner using yttrium-doped zirconia coating. Fuel, 2020, 262, 116502.	6.4	8
16	The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor. Energy, 2021, 235, 121365.	8.8	8
17	Experimental Study on Propane/Air Flame Propagation Characteristics in a Disc-Like Gap Chamber. Combustion Science and Technology, 2019, 191, 1168-1183.	2.3	7
18	Combustion modes and driving mechanisms of pressure fluctuation in a novel vortex-tube combustor with quasi-steady and stratified properties. Experimental Thermal and Fluid Science, 2020, 117, 110134.	2.7	7

HAOLIN YANG

#	Article	IF	CITATIONS
19	Stretch extinction characteristics of CH 4 /CO 2 versus O 2 /H 2 O/CO 2 and O 2 /H 2 O counterflow non-premixed flames at different oxidizer temperatures. Fuel, 2016, 186, 648-655.	6.4	6
20	One zirconia-based ceramic coating strategy of combustion stabilization for fuel-rich flames in a small-scale burner. Fuel, 2022, 310, 122306.	6.4	6
21	A skeletal n-butane mechanism with integrated simplification method. Journal of the Energy Institute, 2020, 93, 1559-1570.	5.3	4
22	Stabilization performances and mechanisms of a diffusionâ€like vortexâ€tube combustor for <scp>oxygenâ€enriched</scp> combustion. International Journal of Energy Research, 2020, 44, 6917-6926.	4.5	4
23	A modeling study of the effect of surface reactions on methanol–air oxidation at low temperatures. Combustion and Flame, 2016, 164, 363-372.	5.2	3
24	Combustion of liquid ethanol in an innovatory vortex-tube combustor with Self-evaporating and edge-like flame properties. Fuel, 2020, 280, 118680.	6.4	3
25	Partially-Premixed Combustion Characteristics and Thermal Performance of Micro Jet Array Burners with Different Nozzle Spacings. Journal of Thermal Science, 2021, 30, 1718-1730.	1.9	3
26	Effects of doping ceria on flame quenching in a narrow channel with zirconia-based functional coatings. Chemical Engineering Journal, 2022, 446, 137216.	12.7	3
27	CO ₂ emissions and carbon capture and storage prospects in the electric power industry of Guangdong Province, China. International Journal of Sustainable Energy, 2013, 32, 562-573.	2.4	2
28	One axial fuel injected vortex-tube combustor with high capacity of combustion stabilization for NO reduction. Energy, 2020, 211, 118659.	8.8	2
29	An Experimental Investigation on Flame Stability and Lean Extinction Limit in Tubular Flame Burners Operating on Jet Fuel. Combustion Science and Technology, 2020, , 1-17.	2.3	0