
Cristian H Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold nanoparticle–decorated earth-abundant clay nanotubes as catalyst for the degradation of phenothiazine dyes and reduction of 4-(4-nitrophenyl)morpholine. Environmental Science and Pollution Research, 2023, 30, 124447-124458.	5.3	7
2	Catalytic production of anilines by nitro-compounds hydrogenation over highly recyclable platinum nanoparticles supported on halloysite nanotubes. Catalysis Today, 2022, 394-396, 510-523.	4.4	10
3	Catalytic pyrolysis of used tires on noble-metal-based catalysts to obtain high-value chemicals: Reaction pathways. Catalysis Today, 2022, 394-396, 475-485.	4.4	16
4	Noble metal nanoparticles supported on titanate nanotubes as catalysts for selective hydrogenation of nitroarenes. Catalysis Today, 2022, 392-393, 93-104.	4.4	14
5	Gold nanoparticles supported on mesostructured oxides for the enhanced catalytic reduction of 4-nitrophenol in water. Catalysis Today, 2022, 388-389, 383-393.	4.4	19
6	Fe-doped Al2O3 nanoplatforms as efficient and recyclable photocatalyst for the dyes remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113733.	3.9	6
7	Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts, 2022, 12, 507.	3.5	11
8	A Simplified Kinetic Model for the Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione over Ir/TiO ₂ in the Presence of a Chiral Additive. Industrial & Engineering Chemistry Research, 2022, 61, 6052-6056.	3.7	0
9	TiO2 nanorods doped with g-C3N4 – Polyethylene composite coating for self-cleaning applications. Materials Chemistry and Physics, 2022, 288, 126356.	4.0	6
10	Mesoporous mixed oxides prepared by hard template methodology as novel drug delivery carriers for methotrexate. Journal of Drug Delivery Science and Technology, 2022, 73, 103483.	3.0	3
11	Copper metallic nanoparticles capped with PEGylated PAMAM-G3 dendrimers for the catalytic reduction of low solubility nitroarenes of pharmaceutical interest. Catalysis Today, 2021, 372, 27-35.	4.4	5
12	NanoMIPs Design for Fucose and Mannose Recognition: A Molecular Dynamics Approach. Journal of Chemical Information and Modeling, 2021, 61, 2048-2061.	5.4	6
13	Efficient and recyclable gold nanoparticles as catalysts for the cleaner production of 4-morpholinoanilines used as pharmaceutical building blocks. Journal of Cleaner Production, 2021, 290, 125761.	9.3	3
14	Rational Design of Novel Glycomimetic Peptides for E-Selectin Targeting. Journal of Chemical Information and Modeling, 2021, 61, 2463-2474.	5.4	5
15	Valorization of Waste Tires via Catalytic Fast Pyrolysis Using Palladium Supported on Natural Halloysite. Industrial & Engineering Chemistry Research, 2021, 60, 18806-18816.	3.7	7
16	Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356, 330-338.	4.4	9
17	Magnetic Pt single and double core-shell structures for the catalytic selective hydrogenation of cinnmaladehyde. Pure and Applied Chemistry, 2020, 92, 413-427.	1.9	3
18	Pd-Co catalysts prepared from palladium-doped cobalt titanate precursors for chemoselective hydrogenation of halonitroarenes. Molecular Catalysis, 2020, 482, 110702.	2.0	2

CRISTIAN H CAMPOS

#	Article	IF	CITATIONS
19	Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications. Journal of Materials Science, 2020, 55, 6976-6991.	3.7	5
20	Liquid Phase Hydrogenation of Pharmaceutical Interest Nitroarenes over Gold-Supported Alumina Nanowires Catalysts. Materials, 2020, 13, 925.	2.9	11
21	The Effect of the ZrO2 Loading in SiO2@ZrO2-CaO Catalysts for Transesterification Reaction. Materials, 2020, 13, 221.	2.9	7
22	Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes. Journal of Catalysis, 2020, 385, 224-237.	6.2	29
23	Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118281.	3.9	16
24	Chemoselective nitroarene hydrogenation over Ni-Pd alloy supported on TiO2 prepared from ilmenite-type PdxNi1â^'xTiO3. Materials Today Communications, 2020, 24, 101091.	1.9	5
25	Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction. Pure and Applied Chemistry, 2019, 91, 1651-1664.	1.9	2
26	Mesoporous Palladium N,N'-Bis(3-Allylsalicylidene)o-Phenylenediamine-Methyl Acrylate Resins as Heterogeneous Catalysts for the Heck Coupling Reaction. Materials, 2019, 12, 2612.	2.9	1
27	Enhanced bimetallic Rh-Ni supported catalysts on alumina doped with mixed lanthanum-cerium oxides for ethanol steam reforming. Molecular Catalysis, 2019, 469, 87-97.	2.0	35
28	Magnetic Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) as Catalysts for the Selective Hydrogenation of Cinnamaldehyde. Effect of the Nature of the Metal Oxide. Materials, 2019, 12, 413.	2.9	5
29	Magnetic Fe3O4@SiO2–Pt and Fe3O4@SiO2–Pt@SiO2 Structures for HDN of Indole. Materials, 2019, 12, 3878.	2.9	3
30	Gold catalysts supported on TiO 2 -nanotubes for the selective hydrogenation of p -substituted nitrobenzenes. Molecular Catalysis, 2018, 447, 21-27.	2.0	38
31	Cytotoxicity, genotoxicity and uptake detection of folic acid-functionalized green upconversion nanoparticles Y2O3/Er3+, Yb3+ as biolabels for cancer cells. Journal of Materials Science, 2018, 53, 6665-6680.	3.7	17
32	Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells. Journal of Materials Research, 2018, 33, 191-200.	2.6	14
33	Synthesis of hybrid microspheres from zirconium butoxide and an ionic–non-ionic copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 91-98.	4.7	2
34	Stable reduced Ni catalysts for xylose hydrogenation in aqueous medium. Catalysis Today, 2018, 310, 59-67.	4.4	17
35	Rhodium(i) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Advances, 2017, 7, 3398-3407.	3.6	9
36	Polyamido amine (PAMAM)-grafted magnetic nanotubes as emerging platforms for the delivery and sustained release of silibinin. Journal of Materials Science, 2017, 52, 9269-9281.	3.7	12

CRISTIAN H CAMPOS

#	Article	IF	CITATIONS
37	Enhancing xylose aqueous-phase hydrogenation catalytic performance of A-site Ce substituted and B-site Rh doped reduced perovskites. Molecular Catalysis, 2017, 436, 182-189.	2.0	13
38	Sulfated Ce x Zr 1â^'x O 2 oxides. Surface properties and performance for methane oxidation under fuel-rich conditions. Materials Chemistry and Physics, 2017, 200, 223-232.	4.0	2
39	A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation. Journal of Chemistry, 2017, 2017, 1-9.	1.9	11
40	PAMAMâ€Conjugated Alumina Nanotubes as Novel Noncytotoxic Nanocarriers with Enhanced Drug Loading and Releasing Performances. Macromolecular Chemistry and Physics, 2016, 217, 1712-1722.	2.2	11
41	Perovskite as nickel catalyst precursor – impact on catalyst stability on xylose aqueous-phase hydrogenation. RSC Advances, 2016, 6, 67817-67826.	3.6	22
42	PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Materials Science and Engineering C, 2016, 65, 164-171.	7.3	38
43	Heterogeneous hydrogenation of nitroaromatic compounds on gold catalysts: Influence of titanium substitution in MCM-41 mesoporous supports. Applied Catalysis A: General, 2016, 517, 110-119.	4.3	17
44	Substrate ionization energy influences the epoxidation of m-substituted styrenes catalyzed by chloroperoxidase from Caldariomyces fumago. Catalysis Communications, 2016, 77, 52-54.	3.3	7
45	Arsenic sorption onto an aluminum oxyhydroxide-poly[(4-vinylbenzyl)trimethylammonium chloride] hybrid sorbent. RSC Advances, 2016, 6, 28379-28387.	3.6	8
46	Organic–inorganic interpenetrated hybrids based on cationic polymer and hydrous zirconium oxide for arsenate and arsenite removal. Chemical Engineering Journal, 2016, 287, 744-754.	12.7	33
47	Effect of Ni Loading on Lanthanide (La and Ce) Promoted Î ³ -Al2O3 Catalysts Applied to Ethanol Steam Reforming. Catalysis Letters, 2016, 146, 433-441.	2.6	19
48	Biocatalytic Performance of Chloroperoxidase from Caldariomyces fumago Immobilized onto TiO2 Based Supports. Topics in Catalysis, 2016, 59, 387-393.	2.8	8
49	Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catalysis Today, 2016, 259, 27-38.	4.4	115
50	Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride]. Materials Chemistry and Physics, 2015, 152, 69-76.	4.0	13
51	Cationic polymer–TiO2 nanocomposite sorbent for arsenate removal. Chemical Engineering Journal, 2015, 268, 362-370.	12.7	41
52	Effect of functionalized trititanate nanotubes on the properties of crosslinked cationic polymer nanocomposite. Polymer International, 2015, 64, 1121-1127.	3.1	6
53	Rh/Al 2 O 3 –La 2 O 3 catalysts promoted with CeO 2 for ethanol steam reforming reaction. Journal of Molecular Catalysis A, 2015, 407, 169-181.	4.8	45
54	A new non-cinchona chiral modifier immobilized on Pt/SiO 2 catalysts for enantioselective heterogeneous hydrogenation. Applied Catalysis A: General, 2015, 498, 76-87.	4.3	7

CRISTIAN H CAMPOS

#	Article	IF	CITATIONS
55	Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: Influence in reaction pathways including coke formation. Applied Catalysis A: General, 2015, 505, 159-172.	4.3	49
56	Immobilised chiral inducer on Pt-based mesoporous titanate nanotubes as heterogeneous catalysts for enantioselective hydrogenation. Journal of Molecular Catalysis A, 2015, 398, 190-202.	4.8	8
57	Effect of the coupling agent on the properties of poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Polymer International, 2015, 64, 595-604.	Td (acid)â 3.1	^' <scp>Al<si 11</si </scp>
58	Hydrogenation of nitro-compounds over rhodium catalysts supported on poly[acrylic acid]/Al2O3 composites. Applied Catalysis A: General, 2015, 489, 280-291.	4.3	23
59	Synthesis and characterization of organic–inorganic hybrid composites from poly(acrylic) Tj ETQq1 1 0.78431	4 rgBT /Ov ₽2.0	erlock 10 Tf 24
60	Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts. Catalysis Today, 2014, 235, 226-236.	4.4	7
61	Chemoselective hydrogenation of 0-, p- and m-chloronitrobenzene at ambient temperature on Au/Fe2O3 catalysts. Applied Catalysis A: General, 2014, 482, 127-136.	4.3	38
62	Hybrid composites from poly[(4-vinylbenzyl)trimethylammonium chloride]–metal oxide using simultaneous radical polymerization/sol–gel synthesis. Materials Letters, 2014, 131, 198-202.	2.6	8
63	Enantioselective hydrogenation of 1-phenyl-1,2-propanodione on cinchonidine-modified Rh/MCM-41 catalysts. Journal of Molecular Catalysis A, 2014, 392, 321-328.	4.8	13
64	Nitrobenzene Hydrogenation on Au/TiO2 and Au/SiO2 Catalyst: Synthesis, Characterization and Catalytic Activity. Catalysis Letters, 2013, 143, 763-771.	2.6	45
65	Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0wt.%lr/ZrO2 catalyst: Effect of meta position and catalytic performance. Catalysis Today, 2013, 213, 93-100.	4.4	44
66	Enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt on immobilized cinchonidine on γ-Al2O3 catalysts. Applied Catalysis A: General, 2013, 466, 198-207.	4.3	8
67	Enantioselective hydrogenation of 1-phenyl-propane-1,2-dione on immobilised cinchonidine Pt/SiO2 catalysts. Journal of Molecular Catalysis A, 2011, 348, 30-41.	4.8	10
68	Selective hydrogenation of furfural on Ir/TiO2 catalysts. Quimica Nova, 2010, 33, 777-780.	0.3	44
69	Chiral Pt/ZrO2 Catalysts. Enantioselective Hydrogenation of 1-phenyl-1,2-propanedione. Molecules, 2010, 15, 3428-3440.	3.8	2
70	ENANTIOSELECTIVE HYDROGENATION OF 1-PHENYL-1,2-PROPANODIONE ON Pt/ ZrO2 CATALYSTS. Journal of the Chilean Chemical Society, 2010, 55, .	1.2	3
71	PREPARATION OF CHIRAL ORGANIC-INORGANIC SOLID HYBRIDS: USE AS SUPPORT OF CATALYSTS IN THE ENANTIOSELECTIVE HYDROGENATION OF ETHYL PYRUVATE. Journal of the Chilean Chemical Society, 2007, 52, .	1.2	3