Wonwoo Nam

List of Publications by Citations

Source: https://exaly.com/author-pdf/1721338/wonwoo-nam-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

87 382 25,041 139 h-index g-index citations papers 27,219 10.3 407 7.37 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
382	High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. <i>Accounts of Chemical Research</i> , 2007 , 40, 522-31	24.3	938
381	Crystallographic and spectroscopic characterization of a nonheme Fe(IV)-O complex. <i>Science</i> , 2003 , 299, 1037-9	33.3	775
380	A highly selective fluorescent chemosensor for Pb2+. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10107-11	16.4	580
379	A highly active zinc catalyst for the controlled polymerization of lactide. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11350-9	16.4	539
378	Nonheme FeIVO complexes that can oxidize the C-H bonds of cyclohexane at room temperature. <i>Journal of the American Chemical Society</i> , 2004 , 126, 472-3	16.4	534
377	Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electroluminescence. <i>Chemical Society Reviews</i> , 2012 , 41, 7061-84	58.5	505
376	Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. <i>Accounts of Chemical Research</i> , 2014 , 47, 1146-54	24.3	374
375	Axial ligand tuning of a nonheme iron(IV)-oxo unit for hydrogen atom abstraction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 19181-6	11.5	344
374	Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. Journal of the American Chemical Society, 2014 , 136, 13942-58	16.4	336
373	An FeIV=O complex of a tetradentate tripodal nonheme ligand. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3665-70	11.5	299
372	Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. <i>Nature</i> , 2011 , 478, 502-5	50.4	262
371	A thiolate-ligated nonheme oxoiron(IV) complex relevant to cytochrome P450. <i>Science</i> , 2005 , 310, 1000	- 3 3.3	228
370	Synthetic mononuclear nonheme iron-oxygen intermediates. <i>Accounts of Chemical Research</i> , 2015 , 48, 2415-23	24.3	221
369	Phosphorescent sensor for robust quantification of copper(II) ion. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11488-91	16.4	213
368	Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1268-77	16.4	213
367	Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)-hydroperoxo species is a sluggish oxidant. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2630-4	16.4	211
366	New Insights into the Mechanisms of OD Bond Cleavage of Hydrogen Peroxide andtert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes. <i>Journal of the American Chemical Society</i> , 2000 , 122, 8677-8684	16.4	211

(2005-2010)

365	Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. <i>Nature Chemistry</i> , 2010 , 2, 756-9	17.6	199
364	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. <i>Energy and Environmental Science</i> , 2012 , 5, 7606	35.4	196
363	Phosphorescent sensor for biological mobile zinc. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18328-42	16.4	194
362	Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol. <i>Journal of the American Chemical Society</i> , 1991 , 113, 7052-7054	16.4	183
361	A two-state reactivity rationale for counterintuitive axial ligand effects on the C-H activation reactivity of nonheme FeIV=O oxidants. <i>Chemistry - A European Journal</i> , 2008 , 14, 1740-56	4.8	181
360	Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. <i>ACS Central Science</i> , 2019 , 5, 13-28	16.8	179
359	A highly reactive mononuclear non-heme manganese(IV)-oxo complex that can activate the strong C-H bonds of alkanes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20088-91	16.4	177
358	Metal Complex-Catalyzed Epoxidation of Olefins by Dioxygen with Co-Oxidation of Aldehydes. A Mechanistic Study. <i>Inorganic Chemistry</i> , 1996 , 35, 1045-1049	5.1	170
357	Mononuclear metal-O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands. <i>Accounts of Chemical Research</i> , 2012 , 45, 1321-30	24.3	161
356	Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes. <i>Inorganic Chemistry</i> , 2007 , 46, 4632-41	5.1	161
355	Axial ligand effects on the geometric and electronic structures of nonheme oxoiron(IV) complexes. Journal of the American Chemical Society, 2008 , 130, 12394-407	16.4	160
354	A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6388-91	16.4	156
353	A mononuclear nonheme iron(IV)-oxo complex which is more reactive than cytochrome P450 model compound I. <i>Chemical Science</i> , 2011 , 2, 1039	9.4	156
352	Metal ion effect on the switch of mechanism from direct oxygen transfer to metal ion-coupled electron transfer in the sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5236-9	16.4	153
351	Metal ion-coupled electron transfer of a nonheme oxoiron(IV) complex: remarkable enhancement of electron-transfer rates by Sc3+. <i>Journal of the American Chemical Society</i> , 2011 , 133, 403-5	16.4	151
350	Dioxygen activation by a non-heme iron(II) complex: formation of an iron(IV)-oxo complex via C-H activation by a putative iron(III)-superoxo species. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10668-70	16.4	148
349	Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?. <i>Inorganic Chemistry</i> , 2013 , 52, 9522-31	5.1	144
348	Axial ligand substituted nonheme FeIV=O complexes: observation of near-UV LMCT bands and Fe=O Raman vibrations. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12494-5	16.4	144

347	Mechanistic insight into alcohol oxidation by high-valent iron-oxo complexes of heme and nonheme ligands. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4235-9	16.4	144
346	Intrinsic properties and reactivities of mononuclear nonheme ironBxygen complexes bearing the tetramethylcyclam ligand. <i>Coordination Chemistry Reviews</i> , 2013 , 257, 381-393	23.2	140
345	Oxoiron(IV) porphyrin pi-cation radical complexes with a chameleon behavior in cytochrome P450 model reactions. <i>Journal of Biological Inorganic Chemistry</i> , 2005 , 10, 294-304	3.7	140
344	Evidence for the Participation of Two Distinct Reactive Intermediates in Iron(III) Porphyrin Complex-Catalyzed Epoxidation Reactions. <i>Journal of the American Chemical Society</i> , 2000 , 122, 6641-6	56 4 9.4	140
343	Geometric and electronic structure and reactivity of a mononuclear "side-on" nickel(III)-peroxo complex. <i>Nature Chemistry</i> , 2009 , 1, 568-72	17.6	138
342	To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. <i>Chemical Society Reviews</i> , 2016 , 45, 1197-210	58.5	137
341	Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16750-61	16.4	137
340	First direct evidence for stereospecific olefin epoxidation and alkane hydroxylation by an oxoiron(IV) porphyrin complex. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14674-5	16.4	133
339	Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex. <i>Journal of the American Chemical Society</i> , 2005 , 127, 4178-9	16.4	131
338	Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20222-5	16.4	129
337	Fundamental electron-transfer properties of non-heme oxoiron(IV) complexes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 434-5	16.4	128
336	Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution. <i>Chemistry - A European Journal</i> , 2002 , 8, 2067-71	4.8	124
335	Reevaluation of the significance of oxygen-18 incorporation in metal complex-catalyzed oxygenation reactions carried out in the presence of oxygen-18-labeled water (H218O). <i>Journal of the American Chemical Society</i> , 1993 , 115, 1772-1778	16.4	124
334	Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. <i>Chemical Science</i> , 2012 , 3, 3058	9.4	123
333	Significant Electronic Effect of Porphyrin Ligand on the Reactivities of High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complexes. <i>Inorganic Chemistry</i> , 1999 , 38, 914-920	5.1	121
332	Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions. <i>Inorganic Chemistry</i> , 2014 , 53, 1804-15	5.1	119
331	Spectroscopic capture and reactivity of a low-spin cobalt(IV)-oxo complex stabilized by binding redox-inactive metal ions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10403-10407	16.4	118
330	[Mn(tmc)(O2)]+: a side-on peroxido manganese(III) complex bearing a non-heme ligand. Angewandte Chemie - International Edition, 2007, 46, 377-80	16.4	118

329	Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. <i>Nature Chemistry</i> , 2011 , 3, 38-41	17.6	114
328	Anionic ligand effect on the nature of epoxidizing intermediates in iron porphyrin complex-catalyzed epoxidation reactions. <i>Inorganic Chemistry</i> , 2002 , 41, 3647-52	5.1	114
327	Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. <i>Coordination Chemistry Reviews</i> , 2017 , 334, 25-42	23.2	112
326	Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)-peroxo complexes. <i>Nature Chemistry</i> , 2014 , 6, 934-40	17.6	111
325	Enhanced electron-transfer reactivity of nonheme manganese(IV)-oxo complexes by binding scandium ions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9186-94	16.4	111
324	Synthesis, structural, and spectroscopic characterization and reactivities of mononuclear cobalt(III)-peroxo complexes. <i>Journal of the American Chemical Society,</i> 2010 , 132, 16977-86	16.4	110
323	Oxidizing intermediates in cytochrome P450 model reactions. <i>Journal of Biological Inorganic Chemistry</i> , 2004 , 9, 654-60	3.7	110
322	Fluorescent zinc sensor with minimized proton-induced interferences: photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions. <i>Inorganic Chemistry</i> , 2012 , 51, 8760-74	5.1	109
321	Determination of Reactive Intermediates in Iron Porphyrin Complex-Catalyzed Oxygenations of Hydrocarbons Using Isotopically Labeled Water: Mechanistic Insights. <i>Journal of the American Chemical Society</i> , 1997 , 119, 1916-1922	16.4	109
320	Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4771-87	16.4	107
319	Identification of an "end-on" nickel-superoxo adduct, [Ni(tmc)(O2)]+. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14230-1	16.4	107
318	An "end-on" chromium(III)-superoxo complex: crystallographic and spectroscopic characterization and reactivity in C-H bond activation of hydrocarbons. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5958-9	16.4	105
317	Reactive intermediates in oxygenation reactions with mononuclear nonheme iron catalysts. Angewandte Chemie - International Edition, 2009, 48, 1257-60	16.4	103
316	Hydrogen atom abstraction and hydride transfer reactions by iron(IV)-oxo porphyrins. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7321-4	16.4	103
315	Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13910-1	16.4	102
314	A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8523-32	16.4	101
313	Structural characterization and remarkable axial ligand effect on the nucleophilic reactivity of a nonheme manganese(III)-peroxo complex. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4150-3	16.4	101
312	Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates. <i>Chemistry - A European Journal</i> , 2015 , 21, 17548-59	4.8	98

311	Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands. <i>Chemistry - A European Journal</i> , 2009 , 15, 10039-46	4.8	98
310	Unified view of oxidative C-H bond cleavage and sulfoxidation by a nonheme iron(IV)-oxo complex via Lewis acid-promoted electron transfer. <i>Inorganic Chemistry</i> , 2014 , 53, 3618-28	5.1	97
309	Comparison of high-spin and low-spin nonheme Fe(III)-OOH complexes in O-O bond homolysis and H-atom abstraction reactivities. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3286-99	16.4	96
308	Formation, stability, and reactivity of a mononuclear nonheme oxoiron(IV) complex in aqueous solution. <i>Chemical Communications</i> , 2005 , 1405-7	5.8	96
307	Nonheme oxoiron(IV) complexes of tris(2-pyridylmethyl)amine with cis-monoanionic ligands. <i>Inorganic Chemistry</i> , 2006 , 45, 6435-45	5.1	96
306	Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. <i>Nature Communications</i> , 2017 , 8, 14839	17.4	94
305	Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. <i>Nature Communications</i> , 2014 , 5, 5440	17.4	94
304	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. <i>Coordination Chemistry Reviews</i> , 2018 , 355, 54-73	23.2	93
303	Direct evidence for oxygen-atom exchange between nonheme oxoiron(IV) complexes and isotopically labeled water. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2417-20	16.4	93
302	Water as an oxygen source in the generation of mononuclear nonheme iron(IV) oxo complexes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1803-6	16.4	92
301	A highly efficient non-heme manganese complex in oxygenation reactions. <i>Chemical Communications</i> , 2007 , 4623-5	5.8	91
300	Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic Oxygenations of Hydrocarbons by H(2)O(2) and the Formation of Oxoiron(IV) Porphyrin Intermediates by m-Chloroperoxybenzoic Acid This work was supported by Center for Cell	16.4	91
299	Participation of Two Distinct Hydroxylating Intermediates in Iron(III) Porphyrin Complex-Catalyzed Hydroxylation of Alkanes. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10805-10809	16.4	91
298	Oxidative N-dealkylation reactions by oxoiron(IV) complexes of nonheme and heme ligands. <i>Inorganic Chemistry</i> , 2007 , 46, 293-8	5.1	90
297	Hydrogen-atom abstraction reactions by manganese(V)- and manganese(IV)-oxo porphyrin complexes in aqueous solution. <i>Chemistry - A European Journal</i> , 2009 , 15, 11482-9	4.8	89
296	Iron and manganese oxo complexes, oxo wall and beyond. <i>Nature Reviews Chemistry</i> , 2020 , 4, 404-419	34.6	87
295	Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-£1,2-peroxo complex. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9906-9	16.4	87
294	Brlisted acid-promoted C-H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(IV)-oxo complex with no kinetic isotope effect. <i>Journal of the American Chemical Society</i> 2013, 135, 5052-61	16.4	86

(2011-2000)

293	First success of catalytic epoxidation of olefins by an electron-rich iron(III) porphyrin complex and H2O2: imidazole effect on the activation of H2O2 by iron porphyrin complexes in aprotic solvent. Journal of Inorganic Biochemistry, 2000 , 80, 219-25	4.2	86
292	Ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11876-9	16.4	85
291	Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. <i>Journal of the American Chemical Society</i> , 2016 , 138, 936-43	16.4	83
290	Bioinspired chemical inversion of L-amino acids to D-amino acids. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1518-9	16.4	82
289	Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)-oxo complex. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3903-11	16.4	79
288	Water as an oxygen source: synthesis, characterization, and reactivity studies of a mononuclear nonheme manganese(IV) oxo complex. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8190-4	16.4	79
287	Reversible formation of iodosylbenzene-iron porphyrin intermediates in the reaction of oxoiron(IV) porphyrin pi-cation radicals and iodobenzene. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 109-1	16.4	79
286	Mononuclear nonheme ferric-peroxo complex in aldehyde deformylation. <i>Chemical Communications</i> , 2005 , 4529-31	5.8	79
285	Time ligand. Chemical Science, 2013, 4, 1302-1306	9.4	78
284	Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer	16.4	78
283	Crystal structure of the two-dimensional framework [Mn(salen)]4n[Re6Te8(CN)6]n [salen = N,N?-ethylenebis(salicylideneaminato)]. <i>Chemical Communications</i> , 2001 , 1470-1471	5.8	76
282	How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?. <i>Chemistry - A European Journal</i> , 2009 , 15, 5577-87	4.8	75
281	Reversible O-O bond cleavage and formation between Mn(IV)-peroxo and Mn(V)-oxo corroles. Journal of the American Chemical Society, 2010 , 132, 14030-2	16.4	74
280	Zinc(II) complexes and aluminum(III) porphyrin complexes catalyze the epoxidation of olefins by iodosylbenzene. <i>Journal of the American Chemical Society</i> , 1990 , 112, 4977-4979	16.4	74
279	Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7025-35	16.4	73
278	High conversion of olefins to cis-diols by non-heme iron catalysts and H2O2. <i>Chemical Communications</i> , 2002 , 1288-9	5.8	72
277	Electron-transfer reduction of dinuclear copper peroxo and bis-Ebxo complexes leading to the catalytic four-electron reduction of dioxygen to water. <i>Chemistry - A European Journal</i> , 2012 , 18, 1084-93	₃ 4.8	71
276	Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(IV)-oxo complex. <i>Inorganic Chemistry</i> , 2011 , 50, 11612-22	5.1	71

275	Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. <i>Journal of Organic Chemistry</i> , 2003 , 68, 7903-6	4.2	71
274	Mechanisms of catalytic reduction of CO with heme and nonheme metal complexes. <i>Chemical Science</i> , 2018 , 9, 6017-6034	9.4	71
273	Tuning the Reactivity of Mononuclear Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. <i>Chemical Science</i> , 2015 , 6, 3624-3632	9.4	70
272	Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme Ru(IV)O Complex. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8623-32	16.4	69
271	A Mononuclear Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Metal Ions. <i>Chemical Science</i> , 2013 , 4, 3917-3923	9.4	69
270	Protonation equilibrium and hydrogen production by a dinuclear cobalt-hydride complex reduced by cobaltocene with trifluoroacetic acid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15294-7	16.4	69
269	Photocatalytic generation of a non-heme oxoiron(IV) complex with water as an oxygen source. Journal of the American Chemical Society, 2011 , 133, 3249-51	16.4	69
268	Experiment and theory reveal the fundamental difference between two-state and single-state reactivity patterns in nonheme Fe(IV)=O versus Ru(IV)=O oxidants. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3356-9	16.4	69
267	Water-Soluble Iron Porphyrin Complex-Catalyzed Epoxidation of Olefins with Hydrogen Peroxide and tert-Butyl Hydroperoxide in Aqueous Solution. <i>Inorganic Chemistry</i> , 1998 , 37, 606-607	5.1	69
266	High-valent metal-oxo intermediates in energy demanding processes: from dioxygen reduction to water splitting. <i>Current Opinion in Chemical Biology</i> , 2015 , 25, 159-71	9.7	68
265	Effect of anionic axial ligands on the formation of oxoiron(IV) porphyrin intermediates. <i>Inorganic Chemistry</i> , 2000 , 39, 5572-5	5.1	68
264	Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates. <i>Accounts of Chemical Research</i> , 2018 , 51, 2014-2022	24.3	68
263	Theoretical Investigations into CH Bond Activation Reaction by Nonheme MnIVO Complexes: Multistate Reactivity with No Oxygen Rebound. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2851-285	66.4	66
262	A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. <i>Chemical Communications</i> , 2012 , 48, 5449-51	5.8	66
261	Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 11713-22	2.8	66
260	[Fe(IV)?O(TBC)(CH3CN)]2+: comparative reactivity of iron(IV)-oxo species with constrained equatorial cyclam ligation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11791-806	16.4	65
259	Solar-Driven Production of Hydrogen Peroxide from Water and Dioxygen. <i>Chemistry - A European Journal</i> , 2018 , 24, 5016-5031	4.8	64
258	Mechanistic borderline of one-step hydrogen atom transfer versus stepwise Sc(3+)-coupled electron transfer from benzyl alcohol derivatives to a non-heme iron(IV)-oxo complex. <i>Inorganic Chemistry</i> , 2012 , 51, 10025-36	5.1	64

(2011-2013)

257	A mononuclear non-heme high-spin iron(III)-hydroperoxo complex as an active oxidant in sulfoxidation reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8838-41	16.4	64
256	Manganese displacement from Zinpyr-1 allows zinc detection by fluorescence microscopy and magnetic resonance imaging. <i>Chemical Communications</i> , 2010 , 46, 4139-41	5.8	64
255	Biomimetic Alkane Hydroxylations by an Iron(III) Porphyrin Complex with H2O2 and by a High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complex. <i>Inorganic Chemistry</i> , 1999 , 38, 3238-3240	5.1	64
254	Mechanisms of Two-Electron versus Four-Electron Reduction of Dioxygen Catalyzed by Earth-Abundant Metal Complexes. <i>ChemCatChem</i> , 2018 , 10, 9-28	5.2	63
253	Experimental and theoretical evidence for nonheme iron(III) alkylperoxo species as sluggish oxidants in oxygenation reactions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2291-4	16.4	62
252	Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 627-33	4.2	62
251	Mechanistic insight into the hydroxylation of alkanes by a nonheme iron(V)-oxo complex. <i>Chemical Communications</i> , 2014 , 50, 5572-5	5.8	61
250	Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric-Superoxo Complexes. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 915-26	6.4	61
249	Mechanistic insights into hydride-transfer and electron-transfer reactions by a manganese(IV)-oxo porphyrin complex. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17127-34	16.4	61
248	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1138-50	4.5	59
247	Chromium(IV)-peroxo complex formation and its nitric oxide dioxygenase reactivity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15269-72	16.4	59
246	Mechanistic insight into the aromatic hydroxylation by high-valent iron(IV)-oxo porphyrin pi-cation radical complexes. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6301-4	4.2	59
245	Oxygen-atom transfer between mononuclear nonheme iron(IV)-oxo and iron(II) complexes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3992-5	16.4	59
244	Amphoteric reactivity of metaloxygen complexes in oxidation reactions. <i>Coordination Chemistry Reviews</i> , 2018 , 365, 41-59	23.2	58
243	A biomimetic ferric hydroperoxo porphyrin intermediate. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2099-101	16.4	58
242	A chromium(III)-superoxo complex in oxygen atom transfer reactions as a chemical model of cysteine dioxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11112-5	16.4	56
241	Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2825-34	16.4	56
240	Chromium(V)-oxo and chromium(III)-superoxo complexes bearing a macrocyclic TMC ligand in hydrogen atom abstraction reactions. <i>Chemical Science</i> , 2011 , 2, 2057	9.4	56

239	Self-hydroxylation of perbenzoic acids at a nonheme iron(II) center. <i>Chemical Communications</i> , 2005 , 5644-6	5.8	56
238	Iodobenzene diacetate as an efficient terminal oxidant in iron(III) porphyrin complex-catalyzed oxygenation reactions. <i>Inorganica Chimica Acta</i> , 2003 , 343, 373-376	2.7	56
237	Mechanistic Insight into Alcohol Oxidation by High-Valent Iron Dxo Complexes of Heme and Nonheme Ligands. <i>Angewandte Chemie</i> , 2005 , 117, 4307-4311	3.6	56
236	Reactivity Patterns of (Protonated) Compound II and Compound I of Cytochrome P450: Which is the Better Oxidant?. <i>Chemistry - A European Journal</i> , 2017 , 23, 6406-6418	4.8	55
235	Fuel Production from Seawater and Fuel Cells Using Seawater. <i>ChemSusChem</i> , 2017 , 10, 4264-4276	8.3	55
234	Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2426-36	16.4	54
233	Highly reactive nonheme iron(III) iodosylarene complexes in alkane hydroxylation and sulfoxidation reactions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6388-92	16.4	54
232	Sulfur versus iron oxidation in an iron-thiolate model complex. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17118-29	16.4	54
231	Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. <i>Glia</i> , 2005 , 50, 168-81	9	53
230	Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1472-6	6.4	52
229	Reactivity comparison of high-valent iron(IV)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. <i>Dalton Transactions</i> , 2013 , 42, 7842-5	4.3	52
228	Designing photoluminescent molecular probes for singlet oxygen, hydroxyl radical, and ironbxygen species. <i>Chemical Science</i> , 2014 , 5, 4123-4135	9.4	51
227	Ratiometric fluorescent probes for detection of intracellular singlet oxygen. <i>Organic Letters</i> , 2013 , 15, 3582-5	6.2	51
226	Biomimetic alkane hydroxylation by cobalt(III) porphyrin complex and m-chloroperbenzoic acid. <i>Chemical Communications</i> , 2001 , 1262-1263	5.8	51
225	Use of 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) as a mechanistic probe for the heterolytic versus homolytic OD bond cleavage of tert-alkyl hydroperoxide by iron(III) porphyrin complex. <i>Chemical Communications</i> , 1999 , 387-388	5.8	51
224	Dioxygen Activation and O-O Bond Formation Reactions by Manganese Corroles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15858-15867	16.4	50
223	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. <i>ACS Catalysis</i> , 2018 , 8, 4528-4538	13.1	50
222	Double action: toward phosphorescence ratiometric sensing of chromium ion. <i>Advanced Materials</i> , 2012 , 24, 2748-54	24	50

221	Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1324-1336	16.4	50
220	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. <i>ACS Catalysis</i> , 2018 , 8, 2479-2487	13.1	49
219	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. <i>Coordination Chemistry Reviews</i> , 2017 , 333, 44-56	23.2	49
218	Acid-induced mechanism change and overpotential decrease in dioxygen reduction catalysis with a dinuclear copper complex. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4018-26	16.4	49
217	Enantioselective recognition of 1,2-amino alcohols by reversible formation of imines with resonance-assisted hydrogen bonds. <i>Organic Letters</i> , 2005 , 7, 3525-7	6.2	48
216	A Mononuclear Nonheme Iron(V)-Imido Complex. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8800-8803	16.4	47
215	Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15857-15860	16.4	47
214	Mechanistic insights into the C-H bond activation of hydrocarbons by chromium(IV) oxo and chromium(III) superoxo complexes. <i>Inorganic Chemistry</i> , 2014 , 53, 645-52	5.1	46
213	Catalytic oxidation of alkanes by iron bispidine complexes and dioxygen: oxygen activation versus autoxidation. <i>Chemical Communications</i> , 2014 , 50, 412-4	5.8	46
212	Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. <i>Chemical Science</i> , 2017 , 8, 7119-7125	9.4	46
211	Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid. <i>Inorganic Chemistry</i> , 2015 , 54, 5806-12	5.1	46
210	Stereoselective alkane hydroxylations by metal salts and m-chloroperbenzoic acid. <i>Tetrahedron Letters</i> , 2002 , 43, 5487-5490	2	46
209	Base specific complex formation of norfloxacin with DNA. <i>Biophysical Chemistry</i> , 1998 , 74, 225-36	3.5	45
208	Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10654-63	16.4	44
207	XAS and DFT investigation of mononuclear cobalt(III) peroxo complexes: electronic control of the geometric structure in CoO2 versus NiO2 systems. <i>Inorganic Chemistry</i> , 2011 , 50, 614-20	5.1	44
206	Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions. <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 2155-9	4.2	44
205	Direct evidence for an iron(IV)-oxo porphyrin pi-cation radical as an active oxidant in catalytic oxygenation reactions. <i>Chemical Communications</i> , 2008 , 1076-8	5.8	43
204	Spectroscopic characterization and reactivity studies of a mononuclear nonheme Mn(III)-hydroperoxo complex. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12229-32	16.4	41

203	Mechanistic insights into the reversible formation of iodosylarene-iron porphyrin complexes in the reactions of oxoiron(IV) porphyrin pi-cation radicals and iodoarenes: equilibrium, epoxidizing intermediate, and oxygen exchange. <i>Chemistry - A European Journal</i> , 2005 , 12, 130-7	4.8	41
202	Highly Reactive Manganese(IV)-Oxo Porphyrins Showing Temperature-Dependent Reversed Electronic Effect in C-H Bond Activation Reactions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12187-12191	16.4	40
201	Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7843-7	16.4	40
200	Reactions of a chromium(III)-superoxo complex and nitric oxide that lead to the formation of chromium(IV)-oxo and chromium(III)-nitrito complexes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14900-3	16.4	40
199	The axial ligand effect on aliphatic and aromatic hydroxylation by non-heme iron(IV)-oxo biomimetic complexes. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 493-504	4.5	40
198	High-valent manganese(v)-oxo porphyrin complexes in hydride transfer reactions. <i>Chemical Communications</i> , 2009 , 704-6	5.8	40
197	Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14372-14375	16.4	39
196	Conversion of high-spin iron(III) Elkylperoxo to iron(IV) Bxo species via OD bond homolysis in nonheme iron models. <i>Chemical Science</i> , 2014 , 5, 156-162	9.4	39
195	Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. <i>Tetrahedron Letters</i> , 2013 , 54, 1384-1388	2	39
194	Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11740-4	16.4	39
193	Nonheme iron-oxo and -superoxo reactivities: O2 binding and spin inversion probability matter. <i>Chemical Communications</i> , 2012 , 48, 2189-91	5.8	39
192	Contrasting effects of axial ligands on electron-transfer versus proton-coupled electron-transfer reactions of nonheme oxoiron(IV) complexes. <i>Chemistry - A European Journal</i> , 2010 , 16, 354-61	4.8	39
191	Mononuclear manganese-peroxo and bis(Ebxo) dimanganese complexes bearing a common N-methylated macrocyclic ligand. <i>Chemistry - A European Journal</i> , 2013 , 19, 14119-25	4.8	38
190	How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 751-4	4.2	38
189	Mononuclear Nonheme High-Spin (S=2) versus Intermediate-Spin (S=1) Iron(IV)-Oxo Complexes in Oxidation Reactions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8027-31	16.4	38
188	Transition metal-mediated O-O bond formation and activation in chemistry and biology. <i>Chemical Society Reviews</i> , 2021 , 50, 4804-4811	58.5	38
187	Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. <i>Inorganic Chemistry</i> , 2017 , 56, 5096-5104	5.1	37
186	Structure and reactivity of the first-row d-block metal-superoxo complexes. <i>Dalton Transactions</i> , 2019 , 48, 9469-9489	4.3	37

(2011-2013)

185	The Fe(III)(H2O2) Complex as a Highly Efficient Oxidant in Sulfoxidation Reactions: Revival of an Underrated Oxidant in Cytochrome P450. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 2519-25	6.4	37
184	Parallel mechanistic studies on the counterion effect of manganese salen and porphyrin complexes on olefin epoxidation by iodosylarenes. <i>Journal of Inorganic Biochemistry</i> , 2005 , 99, 424-31	4.2	37
183	Nickel Complexes as Antioxidants. Inhibition of Aldehyde Autoxidation by Nickel(II) Tetraazamacrocycles. <i>Inorganic Chemistry</i> , 1996 , 35, 6632-6633	5.1	37
182	Fine Control of the Redox Reactivity of a Nonheme Iron(III)-Peroxo Complex by Binding Redox-Inactive Metal Ions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 801-805	16.4	36
181	Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. <i>Chemical Science</i> , 2017 , 8, 7476-7482	9.4	36
180	Switchover of the Mechanism between Electron Transfer and Hydrogen-Atom Transfer for a Protonated Manganese(IV)-Oxo Complex by Changing Only the Reaction Temperature. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7450-4	16.4	36
179	Kinetics and mechanisms of catalytic water oxidation. <i>Dalton Transactions</i> , 2019 , 48, 779-798	4.3	35
178	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. <i>Coordination Chemistry Reviews</i> , 2020 , 421, 213443	23.2	35
177	Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis. <i>Chemical Science</i> , 2014 , 5, 1463	9.4	35
176	Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450. <i>Inorganic Chemistry</i> , 2009 , 48, 6661-9	5.1	35
175	Synthesis and reactivity of rhenium cluster-supported manganese porphyrin complexes. <i>Inorganic Chemistry Communication</i> , 2002 , 5, 612-615	3.1	35
174	Mechanistic dichotomies in redox reactions of mononuclear metal-oxygen intermediates. <i>Chemical Society Reviews</i> , 2020 , 49, 8988-9027	58.5	35
173	Mononuclear nonheme iron(IV)-oxo and manganese(IV)-oxo complexes in oxidation reactions: experimental results prove theoretical prediction. <i>Chemical Communications</i> , 2015 , 51, 13094-7	5.8	34
172	Spectroscopic and computational characterization of Cull-OOR (R = H or cumyl) complexes bearing a Me6-tren ligand. <i>Dalton Transactions</i> , 2011 , 40, 2234-41	4.3	34
171	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3891-3904	16.4	33
170	A mononuclear manganese(iii)-hydroperoxo complex: synthesis by activating dioxygen and reactivity in electrophilic and nucleophilic reactions. <i>Chemical Communications</i> , 2018 , 54, 1209-1212	5.8	33
169	Photoelectrocatalysis to improve cycloreversion quantum yields of photochromic dithienylethene compounds. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 13154-8	16.4	33
168	Manganese substituted Compound I of cytochrome P450 biomimetics: a comparative reactivity study of Mn(V)-oxo versus Mn(IV)-oxo species. <i>Archives of Biochemistry and Biophysics</i> , 2011 , 507, 4-13	4.1	33

167	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. <i>Angewandte Chemie</i> , 2009 , 121, 1835-1838	3.6	33
166	Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. <i>Glia</i> , 2000 , 31, 155-64	9	33
165	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N O Macrocyclic Ligand. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14384-14388	16.4	32
164	Electron-transfer properties of a nonheme manganese(IV)-oxo complex acting as a stronger one-electron oxidant than the iron(IV)-oxo analogue. <i>Chemical Communications</i> , 2012 , 48, 11187-9	5.8	32
163	Reactions of Co(III)-nitrosyl complexes with superoxide and their mechanistic insights. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4284-7	16.4	30
162	Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8042-9	16.4	30
161	Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Complex Stabilized by Binding Redox-Inactive Metal Ions. <i>Angewandte Chemie</i> , 2014 , 126, 10571-10575	3.6	30
160	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4012-4016	16.4	29
159	Direct Evidence for Oxygen-Atom Exchange between Nonheme Oxoiron(IV) Complexes and Isotopically Labeled Water. <i>Angewandte Chemie</i> , 2004 , 116, 2471-2474	3.6	29
158	Mutable Properties of Nonheme Iron(III)-Iodosylarene Complexes Result in the Elusive Multiple-Oxidant Mechanism. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7444-7447	16.4	28
157	Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)Peroxo Complex. <i>Angewandte Chemie</i> , 2009 , 121, 4214-4217	3.6	28
156	Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. <i>Coordination Chemistry Reviews</i> , 2020 , 410, 213219	23.2	27
155	Isolation and structural characterization of the elusive 1:1 adduct of hydrazine and carbon dioxide. <i>Chemical Communications</i> , 2011 , 47, 11219-21	5.8	27
154	Reactive Intermediates in Oxygenation Reactions with Mononuclear Nonheme Iron Catalysts. <i>Angewandte Chemie</i> , 2009 , 121, 1283-1286	3.6	27
153	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. <i>ChemCatChem</i> , 2018 , 10, 1686-170)2 5.2	27
152	Mechanism and fluorescence application of electrochromism in photochromic dithienylcyclopentene. <i>Organic Letters</i> , 2012 , 14, 2238-41	6.2	26
151	Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones. <i>Organic Letters</i> , 2011 , 13, 6386-9	6.2	26
150	An iron(II) complex with a N3S2 thioether ligand in the generation of an iron(IV)-oxo complex and its reactivity in olefin epoxidation. <i>Inorganica Chimica Acta</i> , 2009 , 362, 1031-1034	2.7	26

(2008-2010)

149	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. <i>Angewandte Chemie</i> , 2010 , 122, 8366-8370	3.6	26
148	[Mn(tmc)(O2)]+: A Side-On Peroxido Manganese(III) Complex Bearing a Non-Heme Ligand. Angewandte Chemie, 2007 , 119, 381-384	3.6	26
147	Experimental and Theoretical Evidence for Nonheme Iron(III) Alkylperoxo Species as Sluggish Oxidants in Oxygenation Reactions. <i>Angewandte Chemie</i> , 2007 , 119, 2341-2344	3.6	26
146	High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. <i>Inorganic Chemistry</i> , 2019 , 58, 14842-1	148 ¹ 52	25
145	A nonheme manganese(IV)-oxo species generated in photocatalytic reaction using water as an oxygen source. <i>Chemical Communications</i> , 2015 , 51, 4013-6	5.8	25
144	Activation of hydrocarbon C-H bonds by iodosylbenzene: how does it compare with iron(IV)-oxo oxidants?. <i>Chemical Communications</i> , 2009 , 1562-4	5.8	25
143	Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8405-8409	16.4	24
142	Manganese(V)-oxo corroles in hydride-transfer reactions. <i>Chemical Communications</i> , 2010 , 46, 8160-2	5.8	24
141	Factors That Control the Reactivity of Cobalt(III)-Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7753-7762	16.4	24
140	Fluorescence ratiometric zinc sensors based on controlled energy transfer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17100		23
139	Effects of proton acceptors on formation of a non-heme iron(IV)-oxo complex via proton-coupled electron transfer. <i>Inorganic Chemistry</i> , 2013 , 52, 3094-101	5.1	23
138	Theoretical predictions of a highly reactive non-heme Fe(IV)=O complex with a high-spin ground state. <i>Chemical Communications</i> , 2010 , 46, 4511-3	5.8	23
137	Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 13102-	- ફ .8	23
136	Hydroxylation of Aliphatic Hydrocarbons withm-Chloroperbenzoic Acid Catalyzed by Electron-Deficient Iron(III) Porphyrin Complexes. <i>Bulletin of the Chemical Society of Japan</i> , 1999 , 72, 707	′ -5 ′13	23
135	A mononuclear nonheme cobalt(iii)-hydroperoxide complex with an amphoteric reactivity in electrophilic and nucleophilic oxidative reactions. <i>Dalton Transactions</i> , 2016 , 45, 14511-5	4.3	23
134	Synthesis, characterization, and reactivity of cobalt(III)-oxygen complexes bearing a macrocyclic N-tetramethylated cyclam ligand. <i>Chemistry - A European Journal</i> , 2013 , 19, 14112-8	4.8	22
133	Oxidative properties of a nonheme Ni(II)(O2) complex: Reactivity patterns for C-H activation, aromatic hydroxylation and heteroatom oxidation. <i>Chemical Communications</i> , 2011 , 47, 10674-6	5.8	22
132	Hydrogen Atom Abstraction and Hydride Transfer Reactions by Iron(IV) Dxo Porphyrins. <i>Angewandte Chemie</i> , 2008 , 120, 7431-7434	3.6	22

131	Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)-Imido Complex as Compared to the Iron(IV)-Oxo Analogue. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3709-13	16.4	22
130	Demonstration of the Heterolytic O?O Bond Cleavage of Putative Nonheme Iron(II)?OOH(R) Complexes for Fenton and Enzymatic Reactions. <i>Angewandte Chemie</i> , 2014 , 126, 7977-7981	3.6	21
129	Oxidation of hydroquinones by a nonheme iron(IV)-oxo species. <i>Inorganica Chimica Acta</i> , 2008 , 361, 255	72 <i>2</i> 561	1 21
128	Unified Mechanism of Oxygen Atom Transfer and Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound Nonheme Manganese(IV)-Oxo Complex via Outer-Sphere Electron Transfer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2614-2622	16.4	21
127	Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8372-8375	16.4	21
126	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. <i>ChemSusChem</i> , 2019 , 12, 3931-3940	8.3	20
125	A High-Valent Manganese(IV)-Oxo-Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16124-16129	16.4	20
124	Correlating DFT-calculated energy barriers to experiments in nonheme octahedral Fe(IV)O species. <i>Chemistry - A European Journal</i> , 2012 , 18, 10444-53	4.8	20
123	Mimicry and functions of photosynthetic reaction centers. <i>Biochemical Society Transactions</i> , 2018 , 46, 1279-1288	5.1	20
122	Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9155-9159	16.4	19
121	Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)-Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7675-7679	16.4	19
120	Dioxygen Activation by a Macrocyclic Copper Complex Leads to a Cu2O2 Core with Unexpected Structure and Reactivity. <i>Chemistry - A European Journal</i> , 2016 , 22, 5133-7	4.8	19
119	An amphoteric reactivity of a mixed-valent bis(Ebxo)dimanganese(III,IV) complex acting as an electrophile and a nucleophile. <i>Dalton Transactions</i> , 2016 , 45, 376-83	4.3	19
118	Non-heme manganese catalysts for on-demand production of chlorine dioxide in water and under mild conditions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3680-6	16.4	19
117	An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion. <i>Chemical Communications</i> , 2014 , 50, 1742-4	5.8	19
116	Reversible Formation of Iodosylbenzenelron Porphyrin Intermediates in the Reaction of Oxoiron(IV) Porphyrin ECation Radicals and Iodobenzene. <i>Angewandte Chemie</i> , 2003 , 115, 113-115	3.6	19
115	A Mononuclear Non-heme Manganese(III)-Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12695-12699	16.4	19
114	Catalytic recycling of NAD(P)H. <i>Journal of Inorganic Biochemistry</i> , 2019 , 199, 110777	4.2	18

(2015-2015)

113	Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(VI) complex. <i>Dalton Transactions</i> , 2015 , 44, 7634-42	4.3	18	
112	The effect and influence of cis-ligands on the electronic and oxidizing properties of nonheme oxoiron biomimetics. A density functional study. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 12887-95	2.8	18	
111	A Mononuclear Nonheme Iron(IV)-Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. <i>Journal of the American Chemical Society</i> , 2019 , 141, 80-83	16.4	18	
110	Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 397-409	3	17	
109	Structure and spin state of nonheme FeO complexes depending on temperature: predictive insights from DFT calculations and experiments. <i>Chemical Science</i> , 2017 , 8, 5460-5467	9.4	17	
108	Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1557-1561	6.4	17	
107	An autocatalytic radical chain pathway in formation of an iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol. <i>Chemical Communications</i> , 2013 , 49, 2500-2	5.8	17	
106	Predictive studies of H-atom abstraction reactions by an iron(IV)-oxo corrole cation radical oxidant. <i>Chemical Communications</i> , 2012 , 48, 3491-3	5.8	17	
105	Alkyne oxidation by nonheme iron catalysts and hydroperoxides. <i>Inorganic Chemistry Communication</i> , 2004 , 7, 534-537	3.1	17	
104	Acid Catalysis via Acid-Promoted Electron Transfer. <i>Bulletin of the Korean Chemical Society</i> , 2020 , 41, 1217-1232	1.2	17	
103	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. <i>ChemPhotoChem</i> , 2018 , 2, 121-135	3.3	17	
102	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3510	0 ⁻¹ 354 5	16	
101	Lysosome-specific one-photon fluorescence staining and two-photon singlet oxygen generation by molecular dyad. <i>RSC Advances</i> , 2014 , 4, 16913-16916	3.7	16	
100	Oxygen-Atom Transfer between Mononuclear Nonheme Iron(IV) Dxo and Iron(II) Complexes. <i>Angewandte Chemie</i> , 2006 , 118, 4096-4099	3.6	16	
99	Augmented death in immunostimulated astrocytes deprived of glucose: inhibition by an iron porphyrin FeTMPyP. <i>Journal of Neuroimmunology</i> , 2001 , 112, 55-62	3.5	16	
98	Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic Oxygenations of Hydrocarbons by H2O2 and the Formation of Oxoiron(IV) Porphyrin Intermediates by m-Chloroperoxybenzoic Acid. <i>Angewandte Chemie</i> , 2000 , 112, 3792-3795	3.6	16	
97	Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14613-14621	16.4	16	
96	Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands. <i>Inorganic Chemistry</i> , 2015 , 54, 10513-20	5.1	15	

95	Mn(III)-lodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. <i>Inorganic Chemistry</i> , 2018 , 57, 10232-10240	5.1	15
94	Multi-Electron Oxidation of Anthracene Derivatives by Nonheme Manganese(IV)-Oxo Complexes. <i>Chemistry - A European Journal</i> , 2017 , 23, 7125-7131	4.8	14
93	Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. <i>Green Chemistry</i> , 2018 , 20, 948-963	10	14
92	Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Alkane Hydroxylation and Sulfoxidation Reactions. <i>Angewandte Chemie</i> , 2014 , 126, 6506-6510	3.6	14
91	Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(iv)-oxo complexes. <i>Chemical Communications</i> , 2017 , 53, 9352-9355	5.8	14
90	Autocatalytic dioxygen activation to produce an iron(v)-oxo complex without any reductants. <i>Chemical Communications</i> , 2017 , 53, 8348-8351	5.8	14
89	A chiral ketone for enantioselective recognition of 1,2-amino alcohols. <i>Tetrahedron Letters</i> , 2007 , 48, 6582-6585	2	14
88	Intercalation of bulky Delta,Delta- and Lambda,Lambda-bis-Ru(II) complex between DNA base pairs. Journal of Inorganic Biochemistry, 2008 , 102, 1885-91	4.2	14
87	Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15305-15319	16.4	14
86	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. <i>Coordination Chemistry Reviews</i> , 2021 , 435, 213807	23.2	14
85	Recent progress in production and usage of hydrogen peroxide. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 1241-1252	11.3	14
84	Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6748-6754	16.4	13
83	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)-Superoxo and Manganese(IV)-Peroxo Complexes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12403-7	16.4	13
82	Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)-Oxo Complexes in the Absence and Presence of Lewis Acids. <i>Inorganic Chemistry</i> , 2019 , 58, 13761-13765	5.1	12
81	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. <i>Angewandte Chemie</i> , 2019 , 131, 4052-4056	3.6	12
80	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13581-13585	16.4	12
79	A theoretical study into a trans-dioxo Mn(V) porphyrin complex that does not follow the oxygen rebound mechanism in C-H bond activation reactions. <i>Chemical Communications</i> , 2016 , 52, 904-7	5.8	12
78	Hydride transfer from NADH analogues to a nonheme manganese(IV)-oxo complex via rate-determining electron transfer. <i>Chemical Communications</i> , 2014 , 50, 12944-6	5.8	12

(2005-2015)

77	Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules. <i>Chemistry - A European Journal</i> , 2015 , 21, 10676-80	4.8	12
76	High-Valent Iron-Oxo Porphyrins in Oxygenation Reactions. <i>Handbook of Porphyrin Science</i> , 2010 , 85-13	90.3	12
75	Epoxidation of Olefins with H2O2Catalyzed by an Electronegatively-Substituted Iron Porphyrin Complex in Aprotic Solvent. <i>Chemistry Letters</i> , 1998 , 27, 837-838	1.7	12
74	Phosphorescent Zinc Probe for Reversible Turn-On Detection with Bathochromically Shifted Emission. <i>Inorganic Chemistry</i> , 2015 , 54, 9704-14	5.1	11
73	Bioinspired artificial photosynthesis systems. <i>Tetrahedron</i> , 2020 , 76, 131024	2.4	11
72	Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. <i>Inorganic Chemistry</i> , 2018 , 57, 10945-10952	5.1	11
71	Highly stereoselective directed reactions and an efficient synthesis of azafuranoses from a chiral aziridine. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 3629-34	3.9	11
70	Photoelectrocatalysis to Improve Cycloreversion Quantum Yields of Photochromic Dithienylethene Compounds. <i>Angewandte Chemie</i> , 2012 , 124, 13331-13335	3.6	11
69	Ein biomimetisches Hydroperoxo-Eisen(III)-Porphyrin-Intermediat. <i>Angewandte Chemie</i> , 2010 , 122, 214	3-3:446	11
68	A Manganese(V)-Oxo Tetraamido Macrocyclic Ligand (TAML) Cation Radical Complex: Synthesis, Characterization, and Reactivity Studies. <i>Chemistry - A European Journal</i> , 2018 , 24, 17927-17931	4.8	11
67	A Highly Reactive Oxoiron(IV) Complex Supported by a Bioinspired N3O Macrocyclic Ligand. <i>Angewandte Chemie</i> , 2017 , 129, 14576-14580	3.6	10
66	Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in a Heme Model Study. <i>Inorganic Chemistry</i> , 2019 , 58, 8263-8266	5.1	10
65	Experiment and Theory Reveal the Fundamental Difference between Two-State and Single-State Reactivity Patterns in Nonheme FeIV?O versus RuIV?O Oxidants. <i>Angewandte Chemie</i> , 2008 , 120, 3404-	3407	10
64	Conversion of olefins into trans-diols or trans-diol mono-ethers by using iron porphyrin(III) complex and H2O2. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 1148-1151	3.1	10
63	Mononuclear Nonheme High-Spin (S=2) versus Intermediate-Spin (S=1) Iron(IV) ©xo Complexes in Oxidation Reactions. <i>Angewandte Chemie</i> , 2016 , 128, 8159-8163	3.6	10
62	Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. <i>ACS Catalysis</i> , 2021 , 11, 3073-3083	13.1	10
61	Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2518-24	3.6	9
60	Iron porphyrins anchored to a thermosensitive polymeric core-shell nanosphere as a thermotropic catalyst. <i>Chemical Communications</i> , 2005 , 2960-2	5.8	9

59	Tuning Electron-Transfer Reactivity of a Chromium(III)-Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 365-372	16.4	9
58	Thermal and photoinduced electron-transfer catalysis of high-valent metal-oxo porphyrins in oxidation of substrates. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 35-44	1.8	9
57	Switchover of the Mechanism between Electron Transfer and Hydrogen-Atom Transfer for a Protonated Manganese(IV) Dxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie, 2016, 128, 7576-7580	3.6	8
56	A mononuclear nonheme {FeNO} complex: synthesis and structural and spectroscopic characterization. <i>Chemical Science</i> , 2018 , 9, 6952-6960	9.4	8
55	Regioselective Oxybromination of Benzene and Its Derivatives by Bromide Anion with a Mononuclear Nonheme Mn(IV)-Oxo Complex. <i>Inorganic Chemistry</i> , 2019 , 58, 14299-14303	5.1	8
54	Fine Control of the Redox Reactivity of a Nonheme Iron(III) P eroxo Complex by Binding Redox-Inactive Metal Ions. <i>Angewandte Chemie</i> , 2017 , 129, 819-823	3.6	7
53	A High-Valent Manganese(IV) Dxo Lerium(IV) Complex and Its Enhanced Oxidizing Reactivity. <i>Angewandte Chemie</i> , 2019 , 131, 16270-16275	3.6	7
52	Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. <i>Angewandte Chemie</i> , 2015 , 127, 11906-11910	3.6	7
51	Theoretical Investigation on the Mechanism of Oxygen Atom Transfer between Two Non-Heme Iron Centres. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1027-1030	2.3	7
50	Flexibility of inorganic tennis ball structures inducing anion selectivity. <i>Chemistry - A European Journal</i> , 2006 , 12, 7078-83	4.8	7
49	Photocatalytic redox reactions with metalloporphyrins. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 21-32	1.8	7
48	A theoretical investigation into the first-row transition metal D2 adducts. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2071-2081	6.8	6
47	Investigating Superoxide Transfer through a 🖺 ,2-O2 Bridge between Nonheme Ni(III)-Peroxo and Mn(II) Species by DFT Methods to Bridge Theoretical and Experimental Views. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2437-42	6.4	6
46	Unprecedented Reactivities of Highly Reactive Manganese(III)-Iodosylarene Porphyrins in Oxidation Reactions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19879-19884	16.4	6
45	Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)Imido Complex as Compared to the Iron(IV)-Oxo Analogue. <i>Angewandte Chemie</i> , 2016 , 128, 3773-3777	3.6	6
44	A cobalt(ii) iminoiodane complex and its scandium adduct: mechanistic promiscuity in hydrogen atom abstraction reactions. <i>Dalton Transactions</i> , 2016 , 45, 14538-43	4.3	6
43	A Mononuclear Non-Heme Manganese(III)-Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1521-1528	16.4	6
42	A Highly Reactive Chromium(V) Dxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. <i>ACS Catalysis</i> , 2021 , 11, 2889-2901	13.1	6

(2021-2017)

41	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. <i>Angewandte Chemie</i> , 2017 , 129, 3564-3569	3.6	5	
40	A Mn(iv)-peroxo complex in the reactions with proton donors. <i>Dalton Transactions</i> , 2019 , 48, 5203-5213	4.3	5	
39	Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. <i>Inorganic Chemistry</i> , 2020 , 59, 18010-18017	5.1	5	
38	Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22611-22	3.6	5	
37	Direct Synthesis of Imines via Solid State Reactions of Carbamates with Aldehydes. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, n/a-n/a	5.6	5	
36	Temperature effect on the epoxidation of olefins by an iron(III) porphyrin complex and tert-alkyl hydroperoxides. <i>Chemical Communications</i> , 2000 , 1787-1788	5.8	5	
35	Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	5	
34	Deuterium kinetic isotope effects as redox mechanistic criterions. <i>Bulletin of the Korean Chemical Society</i> , 2021 , 42, 1558	1.2	5	
33	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. <i>Inorganic Chemistry</i> , 2020 , 59, 14838-14846	5.1	5	
32	Mechanistic Insight into the Nitric Oxide Dioxygenation Reaction of Nonheme Iron(III)Buperoxo and Manganese(IV)Peroxo Complexes. <i>Angewandte Chemie</i> , 2016 , 128, 12591-12595	3.6	5	
31	Photoexcited state chemistry of metal-oxygen complexes. <i>Dalton Transactions</i> , 2018 , 47, 16019-16026	4.3	5	
30	A Mononuclear Non-heme Iron(III)-Peroxo Complex with an Unprecedented High O-O Stretch and Electrophilic Reactivity. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15556-15561	16.4	5	
29	Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14294-14302	16.4	4	
28	A ferric-cyanide-bridged one-dimensional dirhodium complex with (18-crown-6)potassium cations. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2001 , 57, 266-8		4	
27	Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brfisted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. <i>Inorganic Chemistry</i> , 2021 , 60, 16996-17007	5.1	4	
26	Enthalpy-Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18559-18570	16.4	4	
25	Proton-promoted disproportionation of iron(V)-imido TAML to iron(V)-imido TAML cation radical and iron(IV) TAML. <i>Chemical Communications</i> , 2020 , 56, 11207-11210	5.8	4	
24	Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. <i>Inorganic Chemistry</i> , 2021 , 60, 4058-4067	5.1	4	

23	Intermetal oxygen atom transfer from an FeO complex to a Mn complex: an experimental and theoretical approach. <i>Chemical Communications</i> , 2016 , 52, 12968-12971	5.8	4
22	Synthesis and crystal structure of nickel(II) complexes with bis(5-methyl-2-thiophenemethyl)(2-pyridylmethyl)amine. <i>Polyhedron</i> , 2010 , 29, 446-450	2.7	3
21	Novel platinum complexes having chirality and free tertiary amine groups for multiple interactions with DNA. <i>Inorganic Chemistry Communication</i> , 2004 , 7, 1178-1180	3.1	3
20	Blockade of peroxynitrite-mediated astrocyte death by manganese(III)-cyclam. <i>Neuroscience Research</i> , 2003 , 45, 157-61	2.9	3
19	Zinc tetrakis(N-methyl-4Ppyridyl) porphyrinato is an effective inhibitor of stimulant-induced activation of RAW 264.7 cells. <i>Toxicology and Applied Pharmacology</i> , 2001 , 172, 140-9	4.6	3
18	EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 3775-3783	6.8	3
17	Generation and Electron-Transfer Reactivity of the Long-Lived Photoexcited State of a Manganese(IV)-Oxo-Scandium Nitrate Complex. <i>Israel Journal of Chemistry</i> , 2020 , 60, 1049-1056	3.4	2
16	Methoxy[meso-5,10,15,20-tetrakis-(2,6-difluorophenyl)porphyrinato]-iron(III), [Fe(TDFPP)(OCH3)]. Acta Crystallographica Section C: Crystal Structure Communications, 2001 , 57, 556-7		2
15	Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High Cℍ Bond Dissociation Energies. <i>ChemPhotoChem</i> , 2020 , 4, 271-281	3.3	2
14	Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer. <i>Dalton Transactions</i> , 2021 , 50, 675-680	4.3	2
13	How does Lewis acid affect the reactivity of mononuclear high-valent chromium®xo species? A theoretical study. <i>Bulletin of the Korean Chemical Society</i> , 2021 , 42, 1501	1.2	2
12	Electronic properties and reactivity patterns of high-valent metal-oxo species of Mn, Fe, Co, and Ni. <i>Bulletin of the Korean Chemical Society</i> , 2021 , 42, 1506	1.2	2
11	Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by Eketoglutarate-Dependent Oxygenases. <i>ACS Catalysis</i> , 2022 , 12, 6756-6769	13.1	2
10	Aromatic hydroxylation of anthracene derivatives by a chromium(iii)-superoxo complex via proton-coupled electron transfer. <i>Chemical Communications</i> , 2019 , 55, 8286-8289	5.8	1
9	Tuning the intermolecular dative interactions by altering the ligand planarity and counter cations in vanadyl(IV) complexes. <i>Dalton Transactions</i> , 2005 , 1567-9	4.3	1
8	Long- and short-range NMR coupling parameters in closo-2,4-C2B5H7 and a number of its derivatives. <i>Journal of Magnetic Resonance</i> , 1984 , 59, 399-405		1
7	Stable carbamate pathway towards organic-inorganic hybrid perovskites and aromatic imines <i>RSC Advances</i> , 2020 , 10, 38055-38062	3.7	1
6	Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(ii) center. <i>Dalton Transactions</i> , 2021 , 50, 11889-11898	4.3	1

LIST OF PUBLICATIONS

5	Nonheme Iron Imido Complexes Bearing a Non-Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. <i>Chemistry - A European Journal</i> , 2021 , 27, 17495-17503	4.8	1
4	Nonheme Iron-Catalyzed Enantioselective cis -Dihydroxylation of Aliphatic Acrylates as Mimics of Rieske Dioxygenases. <i>CCS Chemistry</i> ,1-13	7.2	1
3	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)-Oxo Complex. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16943-16959	16.4	0
2	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. <i>Angewandte Chemie</i> , 2020 , 132, 13683-13687	3.6	
1	Hydrogen Evolution by Molecular Photocatalysis. Springer Handbooks, 2022, 1381-1395	1.3	