Chengji J Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development (Cambridge), 2009, 136, 3161-3171.	1.2	139
2	Concise Review: Quiescent and Active States of Endogenous Adult Neural Stem Cells: Identification and Characterization. Stem Cells, 2011, 29, 907-912.	1.4	100
3	Wnt Signaling in Kidney Development and Disease. Progress in Molecular Biology and Translational Science, 2018, 153, 181-207.	0.9	93
4	Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. Journal of Neurodevelopmental Disorders, 2019, 11, 10.	1.5	88
5	Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. Developmental Biology, 2011, 350, 511-519.	0.9	83
6	Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	81
7	β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development (Cambridge), 2014, 141, 148-157.	1.2	72
8	The canonical Wnt/ß-catenin signaling pathway regulates Fgf signaling for early facial development. Developmental Biology, 2011, 349, 250-260.	0.9	69
9	Macroglial Plasticity and the Origins of Reactive Astroglia in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2011, 31, 11914-11928.	1.7	59
10	Ocular coloboma and dorsoventral neuroretinal patterning defects in Lrp6 mutant eyes. Developmental Dynamics, 2008, 237, 3681-3689.	0.8	57
11	Signaling mechanisms controlling cranial placode neurogenesis and delamination. Developmental Biology, 2014, 389, 39-49.	0.9	55
12	Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. Journal of Cell Science, 2011, 124, 1553-1563.	1.2	54
13	Pax6 Mediates ß-Catenin Signaling for Self-Renewal and Neurogenesis by Neocortical Radial Clial Stem Cells. Stem Cells, 2014, 32, 45-58.	1.4	47
14	Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget, 2017, 8, 115254-115269.	0.8	43
15	Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells, 2019, 8, 1173.	1.8	43
16	Generation of Lrp6 conditional geneâ€ŧargeting mouse line for modeling and dissecting multiple birth defects/congenital anomalies. Developmental Dynamics, 2010, 239, 318-326.	0.8	40
17	Genetics and signaling mechanisms of orofacial clefts. Birth Defects Research, 2020, 112, 1588-1634.	0.8	40
18	Cellular and developmental basis of orofacial clefts. Birth Defects Research, 2020, 112, 1558-1587.	0.8	40

Chengji J Zhou

#	Article	IF	CITATIONS
19	Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Developmental Dynamics, 2010, 239, 200-210.	0.8	34
20	Molecular cloning and characterization of a novel developmentally regulated gene, Bdm1, showing predominant expression in postnatal rat brain. Molecular Brain Research, 1999, 68, 149-158.	2.5	27
21	Environmental mechanisms of orofacial clefts. Birth Defects Research, 2020, 112, 1660-1698.	0.8	26
22	Role of epigenetics and <scp>miRNAs</scp> in orofacial clefts. Birth Defects Research, 2020, 112, 1635-1659.	0.8	22
23	Activation of the Wnt/β atenin signaling reporter in developing mouse olfactory nerve layer marks a specialized subgroup of olfactory ensheathing cells. Developmental Dynamics, 2008, 237, 3157-3168.	0.8	19
24	Canonical Wnt signaling activity during synovial joint development. Journal of Molecular Histology, 2009, 40, 311-316.	1.0	17
25	LDL Receptor–Related Protein 6 Modulates Ret Proto-Oncogene Signaling in Renal Development and Cystic Dysplasia. Journal of the American Society of Nephrology: JASN, 2016, 27, 417-427.	3.0	12
26	Transient activation of Wnt/l²-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochemical and Biophysical Research Communications, 2018, 496, 1302-1307.	1.0	11
27	Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cellular and Molecular Life Sciences, 2020, 77, 3597-3609.	2.4	8
28	Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure. Biochemical and Biophysical Research Communications, 2020, 526, 647-653.	1.0	6
29	Single-cell transcriptomic signatures and gene regulatory networks modulated by Wls in mammalian midline facial formation and clefts. Development (Cambridge), 2022, 149, .	1.2	6
30	The role of Lrp6-mediated Wnt/β-catenin signaling in the development and intervention of spinal neural tube defects in mice. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4
31	Analysis of Diurnal Variations in Heart Rate: Potential Applications for Chronobiology and Cardiovascular Medicine. Frontiers in Physiology, 2022, 13, 835198.	1.3	3
32	In Vivo Genetic Strategies for the Specific Lineage Tracing of Stem Cells. Current Stem Cell Research and Therapy, 2019, 14, 230-238.	0.6	2
33	Introduction to the special issue on orofacial clefts. Birth Defects Research, 2020, 112, 1555-1557.	0.8	0
34	Fundamental Mechanisms of Orofacial Clefts. , 2021, , 99-142.		0
35	NACA and LRP6 Are Part of a Common Genetic Pathway Necessary for Full Anabolic Response to Intermittent PTH. International Journal of Molecular Sciences, 2022, 23, 940.	1.8	0