List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science, 2004, 304, 1021-1024.	6.0	975
3	Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor- PSD-95 Protein Interactions. Science, 2002, 298, 846-850.	6.0	927
4	Receptor trafficking and synaptic plasticity. Nature Reviews Neuroscience, 2004, 5, 952-962.	4.9	886
5	Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology, 2014, 115, 157-188.	2.8	857
6	Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons. Neuron, 2001, 29, 243-254.	3.8	822
7	Long-term depression in the CNS. Nature Reviews Neuroscience, 2010, 11, 459-473.	4.9	785
8	NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo. Journal of Neuroscience, 2007, 27, 2846-2857.	1.7	674
9	Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature, 1994, 369, 233-235.	13.7	659
10	LTP Inhibits LTD in the Hippocampus via Regulation of GSK3Î ² . Neuron, 2007, 53, 703-717.	3.8	632
11	Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization. Neuron, 2000, 25, 649-662.	3.8	631
12	Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genetics, 2002, 31, 184-189.	9.4	584
13	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.	7.1	523
14	Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature, 1997, 388, 686-690.	13.7	507
15	Dual Regulation of NMDA Receptor Functions by Direct Protein-Protein Interactions with the Dopamine D1 Receptor. Cell, 2002, 111, 219-230.	13.5	492
16	Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis. Neuron, 2000, 25, 635-647.	3.8	445
17	Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking. Neuron, 2005, 46, 745-760.	3.8	438
18	Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature, 2000, 403, 274-280.	13.7	403

#	Article	IF	CITATIONS
19	Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD. Neuron, 2002, 36, 661-674.	3.8	390
20	Glycine binding primes NMDA receptor internalization. Nature, 2003, 422, 302-307.	13.7	382
21	Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nature Neuroscience, 2013, 16, 1426-1435.	7.1	346
22	A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13915-13920.	3.3	323
23	Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons. Neuron, 2003, 38, 611-624.	3.8	317
24	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	3.5	267
25	Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization. Science, 2005, 310, 1340-1343.	6.0	261
26	PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neuroscience, 2010, 13, 630-634.	7.1	258
27	Hippocampal long-term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16697-16702.	3.3	244
28	Neuroligins Mediate Excitatory and Inhibitory Synapse Formation. Journal of Biological Chemistry, 2005, 280, 17312-17319.	1.6	242
29	Control of Synaptic Strength, a Novel Function of Akt. Neuron, 2003, 38, 915-928.	3.8	233
30	The role of GSKâ€3 in synaptic plasticity. British Journal of Pharmacology, 2008, 153, S428-37.	2.7	228
31	Chapter 8 Synaptic plasticity in learning and memory: Stress effects in the hippocampus. Progress in Brain Research, 2008, 169, 145-158.	0.9	210
32	Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11471-11476.	3.3	205
33	Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB Journal, 2010, 24, 2533-2545.	0.2	198
34	Postsynaptic TrkC and Presynaptic PTPσ Function as a Bidirectional Excitatory Synaptic Organizing Complex. Neuron, 2011, 69, 287-303.	3.8	184
35	Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology, 2013, 64, 65-73.	2.0	182
36	PDZ Protein Interactions Underlying NMDA Receptor-Mediated Excitotoxicity and Neuroprotection by PSD-95 Inhibitors. Journal of Neuroscience, 2007, 27, 9901-9915.	1.7	180

#	Article	IF	CITATIONS
37	Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nature Neuroscience, 1999, 2, 401-403.	7.1	177
38	Effectiveness of PSD95 Inhibitors in Permanent and Transient Focal Ischemia in the Rat. Stroke, 2008, 39, 2544-2553.	1.0	175
39	A biochemical and functional characterization of diet-induced brain insulin resistance. Journal of Neurochemistry, 2005, 93, 1568-1578.	2.1	171
40	Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. Journal of Psychiatry and Neuroscience, 2017, 42, 222-229.	1.4	162
41	A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function. Neuron, 2006, 49, 175-182.	3.8	158
42	Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus, 2006, 16, 907-915.	0.9	155
43	Calpain-Mediated mGluR1α Truncation: A Key Step in Excitotoxicity. Neuron, 2007, 53, 399-412.	3.8	155
44	Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. , 1998, 30, 79-87.		149
45	A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 2012, 5, 13.	1.4	149
46	An LRRTM4-HSPG Complex Mediates Excitatory Synapse Development on Dentate Gyrus Granule Cells. Neuron, 2013, 79, 680-695.	3.8	149
47	Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nature Neuroscience, 2016, 19, 915-925.	7.1	149
48	Stroke intervention pathways: NMDA receptors and beyond. Trends in Molecular Medicine, 2011, 17, 266-275.	3.5	147
49	Disruption of AMPA Receptor Endocytosis Impairs the Extinction, but not Acquisition of Learned Fear. Neuropsychopharmacology, 2008, 33, 2416-2426.	2.8	144
50	Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. Journal of Clinical Investigation, 2015, 125, 234-247.	3.9	138
51	Deletion of Adenosine A2A Receptors From Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia. Biological Psychiatry, 2015, 78, 763-774.	0.7	135
52	The Specific α-Neurexin Interactor Calsyntenin-3 Promotes Excitatory and Inhibitory Synapse Development. Neuron, 2013, 80, 113-128.	3.8	132
53	Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nature Neuroscience, 2014, 17, 471-480.	7.1	132
54	Ca(2+)-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1721-1725.	3.3	127

#	Article	IF	CITATIONS
55	Endogenous Zn2+ is required for the induction of long-term potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse, 2000, 38, 187-197.	0.6	122
56	Role of NMDA receptor–dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nature Medicine, 2009, 15, 1399-1406.	15.2	119
57	NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology, 2012, 62, 797-806.	2.0	117
58	Blocking Synaptic Removal of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories. Journal of Neuroscience, 2016, 36, 3481-3494.	1.7	117
59	Isolation of various forms of sterol β-d-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. Journal of Neurochemistry, 2002, 82, 516-528.	2.1	114
60	Involvement of Myosin Vb in Glutamate Receptor Trafficking. Journal of Biological Chemistry, 2006, 281, 3669-3678.	1.6	113
61	A kinesin signaling complex mediates the ability of GSK-3β to affect mood-associated behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11573-11578.	3.3	110
62	Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO Journal, 2003, 22, 3254-3266.	3.5	102
63	Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science, 2019, 363, .	6.0	98
64	Microglial VEGF Receptor Response Is an Integral Chemotactic Component in Alzheimer's Disease Pathology. Journal of Neuroscience, 2009, 29, 3-13.	1.7	95
65	The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Frontiers in Cellular Neuroscience, 2014, 8, 160.	1.8	85
66	Modulation of GABA _A Receptor Function by Tyrosine Phosphorylation of β Subunits. Journal of Neuroscience, 1997, 17, 5062-5069.	1.7	83
67	Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nature Communications, 2015, 6, 7738.	5.8	81
68	Mechanisms of Hippocampal Long-Term Depression Are Required for Memory Enhancement by Novelty Exploration. Journal of Neuroscience, 2012, 32, 11980-11990.	1.7	80
69	Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABAA receptors following oxygen-glucose deprivation in cultured cortical neurons. Journal of Neurochemistry, 2005, 92, 103-113.	2.1	79
70	Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8631-8636.	3.3	75
71	Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiology of Disease, 2012, 48, 40-51.	2.1	74
72	PRODUCTION OF TUMOUR NECROSIS FACTOR \hat{I} ± BY PRIMARY CULTURED RAT ALVEOLAR EPITHELIAL CELLS. Cytokine, 2000, 12, 644-654.	1.4	73

#	Article	IF	CITATIONS
73	Critical Role of Increased PTEN Nuclear Translocation in Excitotoxic and Ischemic Neuronal Injuries. Journal of Neuroscience, 2013, 33, 7997-8008.	1.7	72
74	Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron, 2016, 91, 1052-1068.	3.8	70
75	Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death. Neuroscience, 2006, 143, 165-173.	1.1	68
76	Blocking the Deadly Effects of the NMDA Receptor in Stroke. Cell, 2010, 140, 174-176.	13.5	67
77	Intracellular trafficking of AMPA receptors in synaptic plasticity. Cellular and Molecular Life Sciences, 2000, 57, 1526-1534.	2.4	65
78	Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. Journal of Physiology, 1999, 514, 139-150.	1.3	64
79	Role of AMPA receptor trafficking in NMDA receptorâ€dependent synaptic plasticity in the rat lateral amygdala. Journal of Neurochemistry, 2008, 106, 889-899.	2.1	64
80	Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. Journal of Neuroinflammation, 2009, 6, 39.	3.1	62
81	Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neuroscience and Biobehavioral Reviews, 2019, 105, 1-23.	2.9	62
82	MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduction and Targeted Therapy, 2019, 4, 58.	7.1	62
83	γ-Hydroxybutyric acid (GHB) and γ-aminobutyric acidB receptor (GABABR) binding sites are distinctive from one another: molecular evidence. Neuropharmacology, 2004, 47, 1146-1156.	2.0	61
84	NMDARs in Cell Survival and Death: Implications in Stroke Pathogenesis and Treatment. Trends in Molecular Medicine, 2020, 26, 533-551.	3.5	61
85	GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130141.	1.8	60
86	TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer's disease. Aging Cell, 2020, 19, e13113.	3.0	58
87	Nicotinic cholinoceptor-mediated excitatory postsynaptic potentials in rat nucleus ambiguus. Experimental Brain Research, 1993, 96, 83-88.	0.7	55
88	A Place at the Table. Neuroscientist, 2016, 22, 359-371.	2.6	54
89	Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala–periaqueductal gray pathway. Neuroscience, 2003, 118, 1015-1022.	1.1	52
90	Excessive Expression of Acetylcholinesterase Impairs Glutamatergic Synaptogenesis in Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 8950-8960.	1.7	52

#	Article	IF	CITATIONS
91	Tyrosine phosphorylation of the GluR2 subunit is required for long-term depression of synaptic efficacy in young animals in vivo. Hippocampus, 2007, 17, 600-605.	0.9	49
92	Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Frontiers in Behavioral Neuroscience, 2014, 8, 234.	1.0	45
93	GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology, 2007, 52, 146-155.	2.0	44
94	Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission. Neuropsychopharmacology, 2016, 41, 802-810.	2.8	44
95	Neuroprotective Effects of Ginsenoside Rf on Amyloid-β-Induced Neurotoxicity in vitro and in vivo. Journal of Alzheimer's Disease, 2018, 64, 309-322.	1.2	44
96	Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Molecular Brain, 2020, 13, 92.	1.3	44
97	α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Subtype Glutamate Receptor (AMPAR) Endocytosis Is Essential for N-Methyl-D-aspartate-induced Neuronal Apoptosis. Journal of Biological Chemistry, 2004, 279, 41267-41270.	1.6	43
98	The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology, 2013, 74, 59-68.	2.0	43
99	Activation of NMDA receptors in necessary for fast information transfer at brainstem vagal motoneurons. Brain Research, 1991, 567, 260-266.	1.1	42
100	Modular Competition Driven by NMDA Receptor Subtypes in Spike-Timing-Dependent Plasticity. Journal of Neurophysiology, 2007, 97, 2851-2862.	0.9	42
101	NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1. Journal of Neuroscience, 2007, 27, 2298-2308.	1.7	41
102	Molecular mechanisms of NMDA receptor-mediated excitotoxicity: implications for neuroprotective therapeutics for stroke. Neural Regeneration Research, 2016, 11, 1752.	1.6	41
103	Maternal sleep deprivation at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal long-term potentiation in the offspring rats. Molecular Brain, 2016, 9, 17.	1.3	40
104	Anisomycin activates p38 MAP kinase to induce LTD in mouse primary visual cortex. Brain Research, 2006, 1085, 68-76.	1.1	39
105	Insulin, Synaptic Function, and Opportunities for Neuroprotection. Progress in Molecular Biology and Translational Science, 2011, 98, 133-186.	0.9	39
106	Activation of βâ€adrenergic receptors facilitates heterosynaptic translationâ€dependent longâ€ŧerm potentiation. Journal of Physiology, 2011, 589, 4321-4340.	1.3	39
107	Mechanisms of modulation of pregnanolone on glycinergic response in cultured spinal dorsal horn neurons of rat. Neuroscience, 2006, 141, 2041-2050.	1.1	37
108	Loss of Synapse Repressor MDGA1 Enhances Perisomatic Inhibition, Confers Resistance to Network Excitation, and Impairs Cognitive Function. Cell Reports, 2017, 21, 3637-3645.	2.9	37

#	Article	IF	CITATIONS
109	Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Molecular Brain, 2012, 5, 13.	1.3	36
110	Mechanisms Involved in the Reduction of GABAA Receptor α1-Subunit Expression Caused by the Epilepsy Mutation A322D in the Trafficking-competent Receptor. Journal of Biological Chemistry, 2008, 283, 22043-22050.	1.6	34
111	Allosteric potentiation of glycine receptor chloride currents by glutamate. Nature Neuroscience, 2010, 13, 1225-1232.	7.1	34
112	Transgenic mice over-expressing GABABR1a receptors acquire an atypical absence epilepsy-like phenotype. Neurobiology of Disease, 2007, 26, 439-451.	2.1	33
113	The maintenance of longâ€ŧerm memory in the hippocampus depends on the interaction between <i>N</i> â€ethylmaleimideâ€sensitive factor and GluA2. Hippocampus, 2014, 24, 1112-1119.	0.9	32
114	A microfluidic based in vitro model of synaptic competition. Molecular and Cellular Neurosciences, 2014, 60, 43-52.	1.0	31
115	Direct Receptor Cross-Talk Can Mediate the Modulation of Excitatory and Inhibitory Neurotransmission by Dopamine. Journal of Molecular Neuroscience, 2005, 26, 245-252.	1.1	30
116	Mechanisms involved in cholesterol-induced neuronal insulin resistance. Neuropharmacology, 2009, 57, 268-276.	2.0	29
117	Somatostatin regulates excitatory amino acid Letterreceptor-mediated fast excitatory postsynaptic potential components in vagal motoneurons. Neuroscience, 1993, 53, 7-9.	1.1	28
118	Long-Term Potentiation Promotes Proliferation/Survival and Neuronal Differentiation of Neural Stem/Progenitor Cells. PLoS ONE, 2013, 8, e76860.	1.1	28
119	Nicotinic cholinoceptor-mediated excitation in ambigual motoneurons of the rat. Neuroscience, 1991, 40, 759-767.	1.1	27
120	Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Frontiers in Cellular Neuroscience, 2018, 12, 46.	1.8	27
121	Cloning and characterization of a novel variant of rat GABABR1 with a truncated C-terminus. Molecular Brain Research, 2001, 89, 103-110.	2.5	25
122	Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: Testing the AMPA receptor hypothesis in an appetitive learning model. Learning and Memory, 2011, 18, 283-291.	0.5	24
123	Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus. Brain Research, 2013, 1530, 54-65.	1.1	24
124	Hormonal regulation of atypical absence seizures. Annals of Neurology, 2004, 55, 353-361.	2.8	22
125	Fashioning drugs for stroke. Nature Medicine, 2010, 16, 1376-1378.	15.2	22
126	Probing the role of AMPAR endocytosis and longâ€ŧerm depression in behavioural sensitization: relevance to treatment of brain disorders, including drug addiction. British Journal of Pharmacology, 2008, 153, S389-95.	2.7	21

#	Article	IF	CITATIONS
127	GluA1-homomeric AMPA receptor in synaptic plasticity and neurological diseases. Neuropharmacology, 2021, 197, 108708.	2.0	20
128	γ-Hydroxybutyric acid-induced absence seizures in GluR2 null mutant mice. Brain Research, 2001, 897, 27-35.	1.1	19
129	Facilitated extinction of morphine conditioned place preference with Tat-GluA23Y interference peptide. Behavioural Brain Research, 2012, 233, 389-397.	1.2	19
130	Essential role of SBPâ€1 activation in oxygen deprivation induced lipid accumulation and increase in body width/length ratio in <i>Caenorhabditis elegans</i> . FEBS Letters, 2009, 583, 831-834.	1.3	18
131	Sterol regulatory element binding protein-1 (SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateral sclerosis (ALS): Indip, a potential therapeutic peptide. Biochemical and Biophysical Research Communications, 2011, 413, 159-163.	1.0	18
132	The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Scientific Reports, 2011, 1, 203.	1.6	18
133	Simultaneous Monitoring of Presynaptic Transmitter Release and Postsynaptic Receptor Trafficking Reveals an Enhancement of Presynaptic Activity in Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Journal of Neuroscience, 2013, 33, 5867-5877.	1.7	18
134	Facilitated AMPAR endocytosis causally contributes to the maternal sleep deprivation-induced impairments of synaptic plasticity and cognition in the offspring rats. Neuropharmacology, 2018, 133, 155-162.	2.0	18
135	Activation of caspaseâ€6 and cleavage of caspaseâ€6 substrates is an early event in NMDA receptor–mediated excitotoxicity. Journal of Neuroscience Research, 2018, 96, 391-406.	1.3	18
136	Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson's disease models. Communications Biology, 2021, 4, 232.	2.0	18
137	Slice orientation and muscarinic acetylcholine receptor activation determine the involvement of N-methyl D-aspartate receptor subunit GluN2B in hippocampal area CA1 long-term depression. Molecular Brain, 2011, 4, 41.	1.3	16
138	Pathophysiology of and therapeutic options for a GABRA1 variant linked to epileptic encephalopathy. Molecular Brain, 2019, 12, 92.	1.3	16
139	Somatostatin inhibits nicotinic cholinoceptor mediated-excitation in rat ambigual motoneurons in vitro. Neuroscience Letters, 1991, 123, 236-239.	1.0	15
140	Response to Comment on "Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity". Science, 2004, 305, 1912c-1912c.	6.0	15
141	Alteration of GLUR2 expression in the rat brain following absence seizures induced by Î ³ -hydroxybutyric acid. Epilepsy Research, 2001, 44, 41-51.	0.8	14
142	Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behavioural Brain Research, 2019, 364, 374-382.	1.2	14
143	Rundown of NMDA-receptor mediated currents is resistant to lowering intracellular [Ca2+] and is prevented by ATP in rat spinal dorsal horn neurons. Neuroscience Letters, 1993, 157, 183-186.	1.0	13
144	p97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nature Communications, 2019, 10, 4089.	5.8	13

#	Article	IF	CITATIONS
145	LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields. Nature Communications, 2021, 12, 100.	5.8	13
146	Hydroxynorketamine: Implications for the NMDA Receptor Hypothesis of Ketamine's Antidepressant Action. Chronic Stress, 2017, 1, 247054701774351.	1.7	12
147	AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses. Journal of Neuroscience, 2021, 41, 1996-2011.	1.7	11
148	Pharmacological properties of TRPM3 isoforms are determined by the length of the pore loop. British Journal of Pharmacology, 2020, , .	2.7	10
149	Allosteric modulation of GABAA receptors by extracellular ATP. Molecular Brain, 2014, 7, 6.	1.3	9
150	Molecular level activation insights from a NR2A/NR2B agonist. Journal of Biomolecular Structure and Dynamics, 2014, 32, 683-693.	2.0	9
151	Aagab acts as a novel regulator of NEDD4-1-mediated Pten nuclear translocation to promote neurological recovery following hypoxic-ischemic brain damage. Cell Death and Differentiation, 2021, 28, 2367-2384.	5.0	9
152	Modulation of baroreflex sensitivity by the state of protein tyrosine phosphorylation in the brainstem of the rat. Brain Research, 1998, 792, 141-148.	1.1	8
153	Sodium channels develop a tyrosine phosphatase complex. Nature Neuroscience, 2000, 3, 417-419.	7.1	8
154	Interference with AMPA receptor endocytosis: effects on behavioural and neurochemical correlates of amphetamine sensitization in male rats. Journal of Psychiatry and Neuroscience, 2014, 39, 189-199.	1.4	8
155	Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus. Molecular Brain, 2009, 2, 17.	1.3	6
156	Distinct Functional Alterations and Therapeutic Options of Two Pathological De Novo Variants of the T292 Residue of GABRA1 Identified in Children with Epileptic Encephalopathy and Neurodevelopmental Disorders. International Journal of Molecular Sciences, 2022, 23, 2723.	1.8	6
157	Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Current Opinion in Neurobiology, 2022, 75, 102585.	2.0	6
158	Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. ELife, 0, 11, .	2.8	5
159	Directional gating of synaptic plasticity by GPCRs and their distinct downstream signalling pathways. EMBO Journal, 2012, 31, 783-785.	3.5	4
160	Disrupting Protein Complexes Using Tat-Tagged Peptide Mimics. Methods in Molecular Biology, 2011, 756, 381-393.	0.4	4
161	Interference Peptides: A Novel Therapeutic Approach Targeting Synaptic Plasticity in Drug Addiction. , 2006, , 473-484.		3

0.8 2

#	Article	IF	CITATIONS
163	Illuminating Synapse-Specific Homeostatic Plasticity. Neuron, 2011, 72, 682-685.	3.8	2
164	The selective dopamine D1 receptor agonist SKF81297 modulates NMDA receptor currents independently of D1 receptors. Neuropharmacology, 2022, 207, 108967.	2.0	2
165	Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington's Disease. Frontiers in Biology, 2016, 11, 439-458.	0.7	1
166	An Erbin Story: Amygdala Excitation-Inhibition Balance in Anxiety. Biological Psychiatry, 2020, 87, 872-874.	0.7	1
167	SNIPER Peptideâ€Mediated Degradation of Endogenous Proteins. Current Protocols in Chemical Biology, 2015, 7, 1-16.	1.7	1
168	Identification of the TrkC/PTPσ trans-synaptic complex as a bidirectional excitatory synaptic organizer. Neuroscience Research, 2011, 71, e17.	1.0	0
169	Getting "Ras―ults: Solving Molecular Promiscuity through Microdomain-Selective Targeting. Neuron, 2018, 98, 675-678.	3.8	0
170	Molecular interactions between monoclonal oligomer-specific antibody 5E3 and its amyloid beta cognates. PLoS ONE, 2020, 15, e0232266.	1.1	0
171	Disruption of Long-Term Depression Potentiates Latent Inhibition: Key Role for Central Nucleus of the Amygdala. International Journal of Neuropsychopharmacology, 2021, 24, 580-591.	1.0	0
172	Preview: ionotropic glutamate receptor trafficking: AMPA receptors talk back. International Journal of Physiology, Pathophysiology and Pharmacology, 2010, 2, 45-46.	0.8	0