Frank D Rinkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1721098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Scientific Reports, 2022, 12, 4852.	3.3	6
2	Differences in larval pesticide tolerance and esterase activity across honey bee (Apis mellifera) stocks. Ecotoxicology and Environmental Safety, 2020, 206, 111213.	6.0	16
3	Genome-wide patterns of differentiation within and among U.S. commercial honey bee stocks. BMC Genomics, 2020, 21, 704.	2.8	20
4	In silico identification and assessment of insecticide target sites in the genome of the small hive beetle, Aethina tumida. BMC Genomics, 2020, 21, 154.	2.8	6
5	Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa detection destructor, within commercial beekeeping operations. PLoS ONE, 2020, 15, e0227264.	2.5	94
6	Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites. Journal of Invertebrate Pathology, 2018, 153, 57-64.	3.2	29
7	Genome of the small hive beetle (<i>Aethina tumida</i> , Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. GigaScience, 2018, 7, .	6.4	49
8	Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera). Insects, 2017, 8, 9.	2.2	20
9	Pteridine levels and head weights are correlated with age and colony task in the honey bee, <i>Apis mellifera</i> . PeerJ, 2016, 4, e2155.	2.0	7
10	Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera. PLoS ONE, 2015, 10, e0139841.	2.5	81
11	The Drosophila Sodium Channel 1 (DSC1): The founding member of a new family of voltage-gated cation channels. Pesticide Biochemistry and Physiology, 2015, 120, 36-39.	3.6	8
12	Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids. NeuroToxicology, 2015, 47, 99-106.	3.0	19
13	Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biology, 2014, 15, 466.	8.8	252
14	Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology, 2014, 50, 1-17.	2.7	361
15	Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology, 2013, 106, 93-100.	3.6	235
16	Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella. Invertebrate Neuroscience, 2010, 10, 25-33.	1.8	63