Zhongzheng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172090/publications.pdf

Version: 2024-02-01

758635 839053 21 336 12 18 h-index citations g-index papers 21 21 21 295 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy. Water Resources Management, 2022, 36, 1481-1497.	1.9	4
2	Risk analysis of water supply-hydropower generation-environment nexus in the cascade reservoir operation. Journal of Cleaner Production, 2021, 283, 124239.	4.6	20
3	System dynamics model for the coevolution of coupled water supply–power generation–environment systems: Upper Yangtze river Basin, China. Journal of Hydrology, 2021, 593, 125892.	2.3	27
4	Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group. Energy, 2021, 222, 119960.	4.5	29
5	A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station. Energy, 2020, 210, 118531.	4.5	11
6	A construction method of water conservancy model library based on Microservice. IOP Conference Series: Materials Science and Engineering, 2020, 794, 012001.	0.3	1
7	A Hydrologic Uncertainty Processor Using Linear Derivation in the Normal Quantile Transform Space. Water Resources Management, 2020, 34, 3649-3665.	1.9	1
8	Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest. Applied Energy, 2020, 262, 114396.	5.1	70
9	Multiobjective Reservoir Operation Optimization Using Improved Multiobjective Dynamic Programming Based on Reference Lines. IEEE Access, 2019, 7, 103473-103484.	2.6	17
10	Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group. Energy, 2019, 185, 1210-1224.	4.5	13
11	Causal Inference of Optimal Control Water Level and Inflow in Reservoir Optimal Operation Using Fuzzy Cognitive Map. Water (Switzerland), 2019, 11, 2147.	1.2	7
12	Deriving Operating Rules of Hydropower Reservoirs Using Gaussian Process Regression. IEEE Access, 2019, 7, 158170-158182.	2.6	15
13	A hybrid wind speed forecasting model based on a decomposition method and an improved regularized extreme learning machine. Energy Procedia, 2019, 158, 217-222.	1.8	23
14	Integrated scheduling of hydro, thermal and wind power with spinning reserve. Energy Procedia, 2019, 158, 6302-6308.	1.8	18
15	Hydrological Uncertainty Processor (HUP) with Estimation of the Marginal Distribution by a Gaussian Mixture Model. Water Resources Management, 2019, 33, 2975-2990.	1.9	10
16	Long-term joint scheduling of hydropower station group in the upper reaches of the Yangtze River using partition parameter adaptation differential evolution. Engineering Applications of Artificial Intelligence, 2019, 81, 1-13.	4.3	21
17	Identifying Efficient Operating Rules for Hydropower Reservoirs Using System Dynamics Approach—A Case Study of Three Gorges Reservoir, China. Water (Switzerland), 2019, 11, 2448.	1.2	10
18	Self-optimization system dynamics simulation of reservoir operating rules. MATEC Web of Conferences, 2018, 246, 01013.	0.1	3

ZHONGZHENG HE

#	Article	IF	CITATIONS
19	Optimization dispatch rule of the Three Gorges Reservoir considering ecological and power generation benefit. MATEC Web of Conferences, 2018, 246, 01075.	0.1	O
20	Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework. Natural Hazards, 2018, 94, 1187-1210.	1.6	17
21	Long-Term Scheduling of Large-Scale Cascade Hydropower Stations Using Improved Differential Evolution Algorithm. Water (Switzerland), 2018, 10, 383.	1.2	19