Tarek Alshaal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172082/publications.pdf

Version: 2024-02-01

54 papers 1,588 citations

361045 20 h-index 37 g-index

55 all docs

55 docs citations

55 times ranked $\begin{array}{c} 1483 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Refining high-quality leaf protein and valuable co-products from green biomass of Jerusalem artichoke (Helianthus tuberosus L.) for sustainable protein supply. Biomass Conversion and Biorefinery, 2022, 12, 2149-2164.	2.9	10
2	Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. Plants, 2022, 11, 872.	1.6	13
3	Silicon- and nanosilicon-mediated drought and waterlogging stress tolerance in plants. , 2022, , 121-152.		2
4	Raw and Fermented Alfalfa Brown Juice Induces Changes in the Germination and Development of French Marigold (Tagetes patula L.) Plants. Plants, 2021, 10, 1076.	1.6	5
5	Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). Plants, 2021, 10, 1277.	1.6	10
6	The Integrated Amendment of Sodic-Saline Soils Using Biochar and Plant Growth-Promoting Rhizobacteria Enhances Maize (Zea mays L.) Resilience to Water Salinity. Plants, 2021, 10, 1960.	1.6	27
7	Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus tuberosus L.). Plants, 2020, 9, 889.	1.6	12
8	Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 2020, 200, 110732.	2.9	96
9	Would fertilization history render the soil microbial communities and their activities more resistant to rainfall fluctuations?. Ecotoxicology and Environmental Safety, 2020, 201, 110803.	2.9	10
10	Fermented Alfalfa Brown Juice Significantly Stimulates the Growth and Development of Sweet Basil (Ocimum basilicum L.) Plants. Agronomy, 2020, 10, 657.	1.3	8
11	Chemical Traits of Fermented Alfalfa Brown Juice: Its Implications on Physiological, Biochemical, Anatomical, and Growth Parameters of Celosia. Agronomy, 2020, 10, 247.	1.3	16
12	Future Soil Issues. World Soils Book Series, 2019, , 215-224.	0.1	1
13	Soil Research History. World Soils Book Series, 2019, , 13-31.	0.1	1
14	Soil Fertility and Its Security. World Soils Book Series, 2019, , 137-157.	0.1	1
15	Soil Health and Its Biology. World Soils Book Series, 2019, , 175-185.	0.1	3
16	Soils and Humans. World Soils Book Series, 2019, , 201-213.	0.1	2
17	Seasonal and Spatial Distribution of Soil Trace Elements around Kitchener Drain in the Northern Nile Delta, Egypt. Agriculture (Switzerland), 2019, 9, 152.	1.4	23
18	Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water. Ecotoxicology and Environmental Safety, 2019, 181, 248-254.	2.9	21

#	Article	IF	CITATIONS
19	Biochemical traits of Bacillus subtilis MF497446: Its implications on the development of cowpea under cadmium stress and ensuring food safety. Ecotoxicology and Environmental Safety, 2019, 180, 384-395.	2.9	18
20	Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 2019, 139, 1-10.	2.8	157
21	Sulfur promotes biocontrol of purple blotch disease via Trichoderma spp. and enhances the growth, yield and quality of onion. Applied Soil Ecology, 2019, 134, 15-24.	2.1	16
22	Nanoparticles: a Novel Approach for Sustainable Agro-productivity. Environment Biodiversity and Soil Security, 2019, 3, 30-40.	0.1	16
23	Soils and Human Creation in the Holy Quran: from Point of View of Soil Science. Environment Biodiversity and Soil Security, 2019, .	0.1	2
24	Nanobiotechnology for Plants. Environment Biodiversity and Soil Security, 2019, .	0.1	0
25	Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiology and Biochemistry, 2018, 125, 164-171.	2.8	77
26	Uptake of nicotine from discarded cigarette butts – A so far unconsidered path of contamination of plant-derived commodities. Environmental Pollution, 2018, 238, 972-976.	3.7	47
27	Plant Nano-nutrition: Perspectives and Challenges. Environmental Chemistry for A Sustainable World, 2018, , 129-161.	0.3	28
28	Biological Aspects of Selenium and Silicon Nanoparticles in the Terrestrial Environments. , 2018, , 235-264.		12
29	Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Environmental Science and Pollution Research, 2018, 25, 31368-31380.	2.7	11
30	Nanoparticle-Associated Phytotoxicity and Abiotic Stress Under Agroecosystems., 2018,, 241-268.		7
31	Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. Environmental Science and Pollution Research, 2018, 25, 30199-30211.	2.7	51
32	Plant Nutrients and Their Roles Under Saline Soil Conditions. , 2018, , 297-324.		16
33	Nanofertilizers vs. Biofertilizers: New Insights. Environment Biodiversity and Soil Security, 2018, 2, 40-50.	0.1	38
34	Nanomaterials and plant abiotic stress in agroecosystems. Environment Biodiversity and Soil Security, 2018, 2, 50-55.	0.1	14
35	Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant and Soil, 2017, 421, 245-258.	1.8	47
36	Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environmental Science and Pollution Research, 2017, 24, 21917-21928.	2.7	89

#	Article	IF	CITATIONS
37	The Rhizosphere and Plant Nutrition Under Climate Change. , 2017, , 275-308.		17
38	Nanoremediation for Sustainable Crop Production. Sustainable Agriculture Reviews, 2017, , 335-363.	0.6	19
39	Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO2 nanoparticles. Egyptian Journal of Soil Science, 2017, .	0.1	6
40	Foliar application: from plant nutrition to biofortification. Environment Biodiversity and Soil Security, 2017, .	0.1	45
41	Environmental Nanoremediation under Changing Climate. Environment Biodiversity and Soil Security, 2017, 1, 190-200.	0.1	7
42	Nanoparticles, Soils, Plants and Sustainable Agriculture. Sustainable Agriculture Reviews, 2016, , 283-312.	0.6	50
43	Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 2016, 14, 123-147.	8.3	146
44	Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 2015, 13, 359-380.	8.3	29
45	Selenium and its Role in Higher Plants. Environmental Chemistry for A Sustainable World, 2015, , 235-296.	0.3	29
46	Selenium Phytoremediation by Giant Reed. Environmental Chemistry for A Sustainable World, 2015, , 133-198.	0.3	5
47	Copper Uptake Efficiency and Its Distribution Within Bioenergy Grass Giant Reed. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 452-458.	1.3	18
48	Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 2015, 13, 1-19.	8.3	77
49	Giant Reed (Arundo donax L.): A Green Technology for Clean Environment. , 2015, , 3-20.		15
50	Selenium and nano-selenium biofortified sprouts using micro-farm systems., 2015,, 189-190.		3
51	Restoring Soil Ecosystems and Biomass Production of Arundo donax L. under Microbial Communities-Depleted Soil. Bioenergy Research, 2014, 7, 268-278.	2.2	17
52	Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 2014, 12, 495-510.	8.3	108
53	Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environmental Science and Pollution Research, 2014, 21, 7773-7780.	2.7	29
54	Phytoremediation of bauxite-derived red mud by giant reed. Environmental Chemistry Letters, 2013, 11, 295-302.	8.3	60