
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
2	Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 2020, 10, 647-653.	8.1	1,408
3	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
4	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	3.7	1,159
5	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	8.1	973
6	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	3.7	905
7	Betting on negative emissions. Nature Climate Change, 2014, 4, 850-853.	8.1	846
8	The challenge to keep global warming below 2 °C. Nature Climate Change, 2013, 3, 4-6.	8.1	809
9	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	3.7	801
10	Global CO ₂ emissions from cement production. Earth System Science Data, 2018, 10, 195-217.	3.7	762
11	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663
12	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	3.7	616
13	Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 2014, 7, 709-715.	5.4	615
14	The global carbon budget 1959–2011. Earth System Science Data, 2013, 5, 165-185.	3.7	527
15	Clobal carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	3.7	463
16	A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 2021, 16, 073005.	2.2	421
17	Clobal CO ₂ emissions from cement production, 1928–2018. Earth System Science Data, 2019, 11, 1675-1710.	3.7	327
18	Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 2020, 10, 3-6.	8.1	324

#	Article	IF	CITATIONS
19	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	3.7	311
20	Drivers of declining CO2 emissions in 18 developed economies. Nature Climate Change, 2019, 9, 213-217.	8.1	307
21	Key indicators to track current progress and future ambition of the Paris Agreement. Nature Climate Change, 2017, 7, 118-122.	8.1	298
22	Sharing a quota on cumulative carbon emissions. Nature Climate Change, 2014, 4, 873-879.	8.1	295
23	CONSTRUCTING AN ENVIRONMENTALLY-EXTENDED MULTI-REGIONAL INPUT–OUTPUT TABLE USING THE GTAP DATABASE. Economic Systems Research, 2011, 23, 131-152.	1.2	281
24	A synthesis of carbon in international trade. Biogeosciences, 2012, 9, 3247-3276.	1.3	247
25	A MULTI-REGION INPUT–OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO). Economic Systems Research, 2013, 25, 99-121.	1.2	215
26	Reaching peak emissions. Nature Climate Change, 2016, 6, 7-10.	8.1	194
27	Global energy growth is outpacing decarbonization. Environmental Research Letters, 2018, 13, 120401.	2.2	188
28	Modelling nitrous oxide emissions from dairy-grazed pastures. Nutrient Cycling in Agroecosystems, 2004, 68, 243-255.	1.1	175
29	Fossil CO2 emissions in the post-COVID-19 era. Nature Climate Change, 2021, 11, 197-199.	8.1	171
30	Towards real-time verification of CO2 emissions. Nature Climate Change, 2017, 7, 848-850.	8.1	168
31	APPROXIMATION AND REGIONAL AGCREGATION IN MULTI-REGIONAL INPUT–OUTPUT ANALYSIS FOR NATIONAL CARBON FOOTPRINT ACCOUNTING. Economic Systems Research, 2009, 21, 311-335.	1.2	165
32	Warning signs for stabilizing global CO ₂ emissions. Environmental Research Letters, 2017, 12, 110202.	2.2	158
33	Urban infrastructure choices structure climate solutions. Nature Climate Change, 2016, 6, 1054-1056.	8.1	144
34	Global CO ₂ emissions from cement production, 1928–2017. Earth System Science Data, 2018, 10, 2213-2239.	3.7	138
35	Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environmental Research Letters, 2019, 14, 121001.	2.2	133
36	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	13.7	123

#	Article	IF	CITATIONS
37	A three-perspective view of greenhouse gas emission responsibilities in New Zealand. Ecological Economics, 2008, 68, 194-204.	2.9	103
38	Measuring a fair and ambitious climate agreement using cumulative emissions. Environmental Research Letters, 2015, 10, 105004.	2.2	103
39	Spatial spillover effects in determining China's regional CO 2 emissions growth: 2007–2010. Energy Economics, 2017, 63, 161-173.	5.6	98
40	Uncertainties around reductions in China's coal use and CO2 emissions. Nature Climate Change, 2016, 6, 687-690.	8.1	91
41	Attribution of CO ₂ emissions from Brazilian deforestation to consumers between 1990 and 2010. Environmental Research Letters, 2013, 8, 024005.	2.2	82
42	The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015. Geoscientific Model Development, 2017, 10, 2785-2800.	1.3	77
43	Multi-scale landform characterization. Area, 2005, 37, 341-350.	1.0	71
44	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	3.7	68
45	Assessment of multiple ecosystem services in New Zealand at the catchment scale. Environmental Modelling and Software, 2013, 43, 37-48.	1.9	64
46	Environmental externality of coal use in China: Welfare effect and tax regulation. Applied Energy, 2015, 156, 16-31.	5.1	63
47	â€~Made in China': A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information. Applied Energy, 2016, 184, 1106-1113.	5.1	62
48	Land-use emissions embodied in international trade. Science, 2022, 376, 597-603.	6.0	61
49	More than half of China's CO2 emissions are from micro, small and medium-sized enterprises. Applied Energy, 2018, 230, 712-725.	5.1	59
50	Perspective has a strong effect on the calculation of historical contributions to global warming. Environmental Research Letters, 2017, 12, 024022.	2.2	57
51	Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Scientific Data, 2021, 8, 2.	2.4	56
52	A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth System Science Data, 2020, 12, 1437-1465.	3.7	52
53	Provincial transfers of enabled carbon emissions in China: A supply-side perspective. Energy Policy, 2017, 107, 688-697.	4.2	50
54	Climate policy and dependence on traded carbon. Environmental Research Letters, 2013, 8, 034011.	2.2	47

#	Article	IF	CITATIONS
55	Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620.	5.4	46
56	Emissions embodied in global trade have plateaued due to structural changes in China. Earth's Future, 2017, 5, 934-946.	2.4	44
5 7	Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters, 2022, 17, 031001.	2.2	42
58	Structural Changes in Provincial Emission Transfers within China. Environmental Science & Technology, 2018, 52, 12958-12967.	4.6	37
59	Multi-region input-output analysis of embodied emissions and intensities: Spatial aggregation by linking regional and global datasets. Journal of Cleaner Production, 2021, 313, 127894.	4.6	37
60	Global CO ₂ uptake by cement from 1930 to 2019. Earth System Science Data, 2021, 13, 1791-1805.	3.7	35
61	Agricultural land displacement and undernourishment. Journal of Cleaner Production, 2017, 161, 619-628.	4.6	33
62	European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data. Earth System Science Data, 2020, 12, 961-1001.	3.7	31
63	Trends of the EU's territorial and consumption-based emissions from 1990 to 2016. Climatic Change, 2018, 151, 131-142.	1.7	30
64	Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China. Sustainability, 2017, 9, 2342.	1.6	28
65	Life-cycle energy and CO2 analysis of stormwater treatment devices. Water Science and Technology, 2008, 58, 985-993.	1.2	27
66	Timely estimates of India's annual and monthly fossil CO ₂ emissions. Earth System Science Data, 2020, 12, 2411-2421.	3.7	27
67	The consolidated European synthesis of CO ₂ emissions and removals for the European Union and United Kingdom: 1990–2018. Earth System Science Data, 2021, 13, 2363-2406.	3.7	23
68	A successful prediction of the record CO ₂ rise associated with the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
69	Uncertainty in temperature response of current consumption-based emissions estimates. Earth System Dynamics, 2015, 6, 287-309.	2.7	21
70	Spatiotemporal patterns of the fossil-fuel CO ₂ signal in central Europe: results from a high-resolution atmospheric transport model. Atmospheric Chemistry and Physics, 2017, 17, 14145-14169.	1.9	20
71	Morphology-Based Kinetic Study of the Formation of Carbon Dioxide Hydrates with Promoters. Energy & Fuels, 2020, 34, 7307-7315.	2.5	15
72	A comparison of satellite observations with the XCO 2 surface obtained by fusing TCCON measurements and GEOS-Chem model outputs. Science of the Total Environment, 2017, 601-602, 1575-1590.	3.9	14

#	Article	IF	CITATIONS
73	Expansion of lifestyle blocks and urban areas onto high-class land: an update for planning and policy. Journal of the Royal Society of New Zealand, 2013, 43, 128-140.	1.0	13
74	Reduction of Global Life Expectancy Driven by Trade-Related Transboundary Air Pollution. Environmental Science and Technology Letters, 2022, 9, 212-218.	3.9	13
75	A distributed model of water balance in the Motueka catchment, New Zealand. Environmental Modelling and Software, 2007, 22, 1519-1528.	1.9	8
76	Empirical Study of China's Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective. Sustainability, 2017, 9, 569.	1.6	8
77	Towards near real-time, monthly fossil CO2 emissions estimates for the European Union with current-year projections. Atmospheric Pollution Research, 2021, 12, 101229.	1.8	8
78	Planetary Boundaries for Forests and Their National Exceedance. Environmental Science & Technology, 2021, 55, 15423-15434.	4.6	7
79	A future perspective of historical contributions to climate change. Climatic Change, 2021, 164, 1.	1.7	6
80	Tree-ring Δ14C time series from 1948 to 2018Âat a regional background site, China: Influences of atmospheric nuclear weapons tests and fossil fuel emissions. Atmospheric Environment, 2021, 246, 118156.	1.9	5
81	Key points for green management of water-energy-food in the Belt and Road Initiative: Resource utilization efficiency, final demand behaviors and trade inequalities. Journal of Cleaner Production, 2022, 362, 132386.	4.6	5
82	Evaluation and drivers of global low-carbon economies based on satellite data. Humanities and Social Sciences Communications, 2022, 9, .	1.3	4
83	Investigating the direct and indirect environmental pressures of New Zealand's food and fibre industries. International Journal of Sustainable Development, 2007, 10, 319.	0.1	2
84	Allocation of global temperature change to consumers. Climatic Change, 2015, 129, 43-55.	1.7	2
85	CO2 emissions from energy systems and industrial processes: Inventories from data- and proxy-driven approaches. , 2022, , 31-57.		1
86	Influence of Test Cycles on Energy Consumption Test of Electric Vehicles. E3S Web of Conferences, 2021, 241, 02004.	0.2	0