
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1720437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature, 2002, 419, 384-387.	13.7	938
2	Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature, 2004, 430, 764-768.	13.7	613
3	Glycopolymer Nanobiotechnology. Chemical Reviews, 2016, 116, 1673-1692.	23.0	249
4	Synthesis and biological application of glycopolymers. Journal of Polymer Science Part A, 2007, 45, 5031-5036.	2.5	132
5	Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry, 2008, 74, 118-123.	2.4	129
6	Reversible Absorption of CO ₂ Triggered by Phase Transition of Amine-Containing Micro- and Nanogel Particles. Journal of the American Chemical Society, 2012, 134, 18177-18180.	6.6	129
7	A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nature Chemistry, 2017, 9, 715-722.	6.6	125
8	Design and synthesis of well-defined glycopolymers for the control of biological functionalities. Polymer Journal, 2012, 44, 679-689.	1.3	123
9	Self-Assembly of Semifluorinated Dendrons Attached to Electron-Donor Groups Mediates Their ï€-Stacking via a Helical Pyramidal Column. Chemistry - A European Journal, 2006, 12, 6298-6314.	1.7	116
10	Formation of Oriented Helical Peptide Layers on a Gold Surface Due to the Self-Assembling Properties of Peptides. Langmuir, 1998, 14, 6935-6940.	1.6	109
11	Inhibition of Alzheimer Amyloid Aggregation with Sulfated Glycopolymers. Biomacromolecules, 2007, 8, 2129-2134.	2.6	92
12	Chemoenzymatically Synthesized Glycoconjugate Polymersâ€. Biomacromolecules, 2003, 4, 410-415.	2.6	82
13	Self-Assembly of Semifluorinated Minidendrons Attached to Electron-Acceptor Groups into Pyramidal Columns. Chemistry - A European Journal, 2007, 13, 3330-3345.	1.7	74
14	Control of Protein-Binding Kinetics on Synthetic Polymer Nanoparticles by Tuning Flexibility and Inducing Conformation Changes of Polymer Chains. Journal of the American Chemical Society, 2012, 134, 15209-15212.	6.6	73
15	Preparation of glycopolymerâ€substituted gold nanoparticles and their molecular recognition. Journal of Polymer Science Part A, 2009, 47, 1412-1421.	2.5	72
16	Temperatureâ€Responsive Microgel Films as Reversible Carbon Dioxide Absorbents in Wet Environment. Angewandte Chemie - International Edition, 2014, 53, 2654-2657.	7.2	71
17	Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application. Polymer Chemistry, 2014, 5, 931-939.	1.9	70
18	Protecting-Group-Free Synthesis of Glycopolymers Bearing Sialyloligosaccharide and Their High Binding with the Influenza Virus. ACS Macro Letters, 2014, 3, 1074-1078.	2.3	60

#	Article	IF	CITATIONS
19	Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins. Analytical Biochemistry, 2002, 310, 27-35.	1.1	55
20	Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme. Journal of the American Chemical Society, 2016, 138, 4282-4285.	6.6	55
21	Thermocells Driven by Phase Transition of Hydrogel Nanoparticles. Journal of the American Chemical Society, 2020, 142, 17318-17322.	6.6	54
22	Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules, 2017, 18, 4385-4392.	2.6	52
23	Helical Porous Protein Mimics Self-Assembled from Amphiphilic Dendritic Dipeptides. Australian Journal of Chemistry, 2005, 58, 472.	0.5	47
24	Rational Design of Synthetic Nanoparticles with a Large Reversible Shift of Acid Dissociation Constants: Proton Imprinting in Stimuli Responsive Nanogel Particles. Advanced Materials, 2014, 26, 3718-3723.	11.1	46
25	Dendritic sugar-microarrays by click chemistry. Thin Solid Films, 2009, 518, 880-888.	0.8	43
26	Controlling the lectin recognition of glycopolymers <i>via</i> distance arrangement of sugar blocks. Chemical Communications, 2018, 54, 82-85.	2.2	43
27	Metal Mesh Device Sensor Immobilized with a Trimethoxysilane-Containing Glycopolymer for Label-Free Detection of Proteins and Bacteria. ACS Applied Materials & Interfaces, 2014, 6, 13234-13241.	4.0	40
28	Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO ₂ : fine tuning the pK _a of ammonium ions in the particles. Chemical Science, 2015, 6, 6112-6123.	3.7	40
29	Synthesis and properties of a wellâ€defined glycopolymer via living radical polymerization. Polymers for Advanced Technologies, 2007, 18, 647-651.	1.6	37
30	Selective Protein Separation Using Siliceous Materials with a Trimethoxysilane-Containing Glycopolymer. ACS Applied Materials & amp; Interfaces, 2012, 4, 411-417.	4.0	37
31	Biotinylation of Silicon and Nickel Surfaces and Detection of Streptavidin as Biosensor. Langmuir, 2013, 29, 9457-9463.	1.6	36
32	Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus. Bioconjugate Chemistry, 2019, 30, 1192-1198.	1.8	36
33	Self-Assembly of α-Helix Peptide/Crown Ether Conjugate upon Complexation with Ammonium-Terminated Alkanethiolate. Langmuir, 1998, 14, 2761-2767.	1.6	35
34	Patterned Adsorption of Protein onto a Carbohydrate Monolayer Immobilized on Si. Langmuir, 2003, 19, 9107-9109.	1.6	35
35	Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons. Physical Review B, 2003, 67, .	1.1	34
36	Micropatterned Carbohydrate Displays by Self-Assembly of Glycoconjugate Polymers on Hydrophobic Templates on Silicon. Biomacromolecules, 2004, 5, 1708-1713.	2.6	34

#	Article	IF	CITATIONS
37	Biological specific recognition of glycopolymer- modified interfaces by RAFT living radical polymerization. Polymer Journal, 2010, 42, 172-178.	1.3	34
38	Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Applied Bio Materials, 2018, 1, 356-366.	2.3	33
39	A specific inhibitory effect of multivalent trehalose toward Aβ(1-40) aggregation. Polymer Chemistry, 2011, 2, 1822.	1.9	32
40	Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polymer Journal, 2014, 46, 537-545.	1.3	32
41	The self-assembled monolayer of saccharide via click chemistry: Formation and protein recognition. Thin Solid Films, 2008, 516, 2443-2449.	0.8	31
42	Aggregation of Alzheimer Amyloid β Peptide (1â^'42) on the Multivalent Sulfonated Sugar Interface. Bioconjugate Chemistry, 2010, 21, 1079-1086.	1.8	31
43	Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. Journal of Controlled Release, 2019, 295, 13-20.	4.8	29
44	Chemoenzymatic synthesis of glycoconjugate polymers: greening the synthesis of biomaterials. Green Chemistry, 2003, 5, 610.	4.6	28
45	Surface Modification of Siliceous Materials Using Maleimidation and Various Functional Polymers Synthesized by Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 5125-5133.	4.0	28
46	Design of multi-functional linear polymers that capture and neutralize a toxic peptide: a comparison with cross-linked nanoparticles. Journal of Materials Chemistry B, 2015, 3, 1706-1711.	2.9	28
47	Signal amplified two-dimensional photonic crystal biosensor immobilized with glyco-nanoparticles. Journal of Materials Chemistry B, 2014, 2, 3324-3332.	2.9	27
48	Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers. ACS Biomaterials Science and Engineering, 2016, 2, 205-212.	2.6	26
49	Replacing Cu(II)Br ₂ with Me ₆ -TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules, 2020, 21, 250-261.	2.6	26
50	Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angewandte Chemie - International Edition, 2020, 59, 679-683.	7.2	26
51	A Micropatterned Multifunctional Carbohydrate Display by an Orthogonal Self-Assembling Strategy. Biomacromolecules, 2007, 8, 753-756.	2.6	25
52	Interaction Analyses of Amyloid β Peptide (1–40) with Glycosaminoglycan Model Polymers. Bulletin of the Chemical Society of Japan, 2010, 83, 1004-1009.	2.0	25
53	Effect of Physical Properties of Nanogel Particles on the Kinetic Constants of Multipoint Protein Recognition Process. Biomacromolecules, 2014, 15, 541-547.	2.6	25
54	Measuring Protein Binding to Individual Hydrogel Nanoparticles with Single-Nanoparticle Surface Plasmon Resonance Imaging Microscopy. Journal of Physical Chemistry C, 2016, 120, 16843-16849.	1.5	25

#	Article	IF	CITATIONS
55	Development of glycosaminoglycan mimetics using glycopolymers. Polymer Journal, 2016, 48, 229-237.	1.3	25
56	Preparation of Glycopolymer-Modified Gold Nanoparticles and a New Approach for a Lateral Flow Assay. Bulletin of the Chemical Society of Japan, 2011, 84, 466-470.	2.0	24
57	Optimization of Poly(<i>N</i> -isopropylacrylamide) as an Artificial Amidase. Biomacromolecules, 2015, 16, 411-421.	2.6	24
58	Controlled polymerization for the development of bioconjugate polymers and materials. Journal of Materials Chemistry B, 2020, 8, 2010-2019.	2.9	24
59	Chemoenzymatic synthesis of glycoconjugate polymers starting from nonreducing disaccharides. Journal of Polymer Science Part A, 2004, 42, 4598-4606.	2.5	23
60	Peptides binding to a Gb3 mimic selected from a phage library. Biochimica Et Biophysica Acta - General Subjects, 2004, 1673, 131-138.	1.1	23
61	Synthesis of well-controlled glycopolymers bearing oligosaccharides and their interactions with influenza viruses. Polymer Journal, 2016, 48, 745-749.	1.3	23
62	Minimization of Synthetic Polymer Ligands for Specific Recognition and Neutralization of a Toxic Peptide. Journal of the American Chemical Society, 2015, 137, 10878-10881.	6.6	22
63	Electrochemical assay for saccharide–protein interactions using glycopolymer-modified gold nanoparticles. Electrochemistry Communications, 2011, 13, 830-833.	2.3	21
64	Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism. Langmuir, 2018, 34, 8591-8598.	1.6	21
65	Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA- <i>r</i> -Phosmer) Coating. ACS Applied Materials & Interfaces, 2018, 10, 23674-23681.	4.0	19
66	Inhibition of Alzheimer amyloid \hat{l}^2 aggregation by polyvalent trehalose. Science and Technology of Advanced Materials, 2008, 9, 024407.	2.8	18
67	Membrane reactor immobilized with palladiumâ€loaded polymer nanogel for continuousâ€flow Suzuki coupling reaction. AICHE Journal, 2015, 61, 582-589.	1.8	18
68	Assembly of Defect-Free Microgel Nanomembranes for CO ₂ Separation. ACS Applied Materials & Interfaces, 2021, 13, 30030-30038.	4.0	18
69	Cation recognition by self-assembled monolayers of oriented helical peptides having a crown ether unit. Biopolymers, 2000, 55, 391-398.	1.2	17
70	Preparation of α-mannoside hydrogel and electrical detection of saccharide-protein interactions using the smart gel-modified gate field effect transistor. Nanoscale Research Letters, 2012, 7, 108.	3.1	17
71	Wide-range p <i>K</i> _a tuning of proton imprinted nanoparticles for reversible protonation of target molecules <i>via</i> thermal stimuli. Journal of Materials Chemistry B, 2017, 5, 9204-9210.	2.9	17
72	Macroporous Gel with a Permeable Reaction Platform for Catalytic Flow Synthesis. ACS Omega, 2017, 2, 8796-8802.	1.6	17

#	Article	IF	CITATIONS
73	Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effect of Their Molecular Mobility on Interaction with the Influenza Virus. Biomacromolecules, 2019, 20, 2763-2769.	2.6	17
74	Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1–42). Science and Technology of Advanced Materials, 2009, 10, 034605.	2.8	16
75	Polymer microgel particles as basic catalysts for Knoevenagel condensation in water. Polymer Journal, 2016, 48, 897-904.	1.3	16
76	Effects of Hydrophobic Modifications and Phase Transitions of Polyvinylamine Hydrogel Films on Reversible CO ₂ Capture Behavior: Comparison between Copolymer Films and Blend Films for Temperatureâ€Responsive CO ₂ Absorption. Macromolecular Chemistry and Physics, 2017, 218, 1600570.	1.1	16
77	Syntheses of sulfated glycopolymers and analyses of their BACE-1 inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6390-6395.	1.0	15
78	Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-D-Glucosamine. Membranes, 2013, 3, 169-181.	1.4	15
79	Novel Detection Technique for Particulate Matter in Air Using Metal Mesh Device Sensors. Chemistry Letters, 2014, 43, 408-410.	0.7	15
80	Design and preparation of thermo-responsive vinylamine-containing micro-gel particles for reversible absorption of carbon dioxide. Polymer Journal, 2017, 49, 601-606.	1.3	15
81	Syntheses of Sulfo-Glycodendrimers Using Click Chemistry and Their Biological Evaluation. Molecules, 2012, 17, 11877-11896.	1.7	14
82	Preparation of nanogel-immobilized porous gel beads for affinity separation of proteins: fusion of nano and micro gel materials. Polymer Journal, 2015, 47, 220-225.	1.3	14
83	Size-tuned hydrogel network of palladium-confining polymer particles: a highly active and durable catalyst for Suzuki coupling reactions in water at ambient temperature. Polymer Journal, 2018, 50, 1179-1186.	1.3	14
84	Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio. Journal of Materials Chemistry B, 2020, 8, 10101-10107.	2.9	13
85	Bioinert surface to protein adsorption with higher generation of dendrimer SAMs. Colloids and Surfaces B: Biointerfaces, 2011, 84, 280-284.	2.5	12
86	Preparation of Palladium-loaded Polymer Nanoparticles with Catalytic Activity for Hydrogenation and Suzuki Coupling Reactions. Chemistry Letters, 2013, 42, 301-303.	0.7	12
87	Label-free Detection of Antigen Protein Using a Metal Mesh Device Surface-modified by an Antibody. Analytical Sciences, 2015, 31, 173-176.	0.8	12
88	Macroporous Monolith with Polymer Gel Matrix as Continuous-flow Catalytic Reactor. Chemistry Letters, 2017, 46, 1065-1067.	0.7	12
89	Preparation of palladium-loaded polymer hydrogel catalysts with high durability and recyclability. Polymer Journal, 2020, 52, 671-679.	1.3	12
90	Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers. Biomacromolecules, 2021, 22, 3119-3127.	2.6	12

#	Article	IF	CITATIONS
91	A globotriaosylceramide (Gb3Cer) mimic peptide isolated from phage display library expressed strong neutralization to Shiga toxins. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 883-889.	1.1	11
92	SPR study for analysis of a water-soluble glycopolymer interface and molecular recognition properties. Polymer Journal, 2017, 49, 255-262.	1.3	11
93	Poly(<scp><i>N</i></scp> â€isopropylacrylamide) gelâ€based macroporous monolith for continuousâ€flow recovery of palladium(<scp>II</scp>) ions. Journal of Applied Polymer Science, 2017, 134, .	1.3	11
94	Reversible p <i>K</i> _a Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions. ACS Applied Materials & Interfaces, 2018, 10, 31096-31105.	4.0	11
95	Glycopolymers Mimicking GM1 Gangliosides: Cooperativity of Galactose and Neuraminic Acid for Cholera Toxin Recognition. Chemistry - an Asian Journal, 2019, 14, 1021-1027.	1.7	11
96	Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 32184-32192.	4.0	11
97	Immobilization of Polyrotaxane on a Solid Substrate as the Design of Dynamic Surface. Polymer Journal, 2009, 41, 952-953.	1.3	10
98	Glycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. Journal of Materials Chemistry B, 2017, 5, 1148-1154.	2.9	10
99	Fine-tuning of the surface porosity of micropatterned polyethersulfone membranes prepared by phase separation micromolding. Polymer Journal, 2020, 52, 397-403.	1.3	10
100	Electrostatic Interactions between Acid-/Base-Containing Polymer Nanoparticles and Proteins: Impact of Polymerization pH. ACS Applied Bio Materials, 2020, 3, 3827-3834.	2.3	10
101	Combining Acid- and Base-Imprinted Nanoparticles in a Hydrogel Film for Temperature-Responsive Quick and Reversible Capture of Salt. ACS Applied Polymer Materials, 2020, 2, 505-514.	2.0	10
102	An efficient matrix that resists the nonspecific adsorption of protein to fabricate carbohydrate arrays on silicon. Thin Solid Films, 2006, 499, 213-218.	0.8	9
103	Polyacrylamide backbones for polyvalent bioconjugates using "post-click―chemistry. Polymer Chemistry, 2016, 7, 5920-5924.	1.9	9
104	Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. ChemBioChem, 2017, 18, 2063-2068.	1.3	9
105	Polystyreneâ€5upported PPh ₃ in Monolithic Porous Material: Effect of Cross‣inking Degree on Coordination Mode and Catalytic Activity in Pdâ€Catalyzed Câ^'C Crossâ€Coupling of Aryl Chlorides. ChemCatChem, 2020, 12, 4034-4037.	1.8	9
106	Thermoresponsive CO2 absorbent for various CO2 concentrations: tuning the pKa of ammonium ions for effective carbon capture. Polymer Journal, 2021, 53, 157-167.	1.3	9
107	Surface potential generation by helical peptide monolayers and multilayers on gold surface. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 287-290.	1.6	8
108	Elucidation of Glc <scp>NA</scp> câ€binding properties of type <scp>III</scp> intermediate filament proteins, using Glc <scp>NA</scp> câ€bearing polymers. Genes To Cells, 2017, 22, 900-917.	0.5	8

#	Article	IF	CITATIONS
109	Quantitative preparation of multiblock glycopolymers bearing glycounits at the terminal segments by aqueous reversible addition–fragmentation chain transfer polymerization of acrylamide monomers. Journal of Polymer Science Part A, 2019, 57, 857-861.	2.5	8
110	Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging. ACS Omega, 2019, 4, 20690-20696.	1.6	8
111	Encapsulation of Polythiophene by Glycopolymer for Water-soluble Nanowire. Chemistry Letters, 2011, 40, 864-866.	0.7	7
112	Anti-biofouling phosphorylated HEMA and PEGMA block copolymers show high affinity to hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2017, 160, 289-296.	2.5	7
113	Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Industrial & Engineering Chemistry Research, 2020, 59, 15179-15187.	1.8	7
114	A QCM study of strong carbohydrate–carbohydrate interactions of glycopolymers carrying mannosides on substrates. Journal of Materials Chemistry B, 2022, 10, 2597-2601.	2.9	7
115	Preparation and functions of self-assembled monolayers of helix peptides. Journal of Polymer Science Part A, 2000, 38, 4826-4831.	2.5	6
116	A micropatterned carbohydrate display for tissue engineering by self-assembly of heparin. Surface Science, 2007, 601, 3871-3875.	0.8	6
117	Quantitative Measurement of Protein Using Metal Mesh Device. Analytical Sciences, 2017, 33, 1033-1039.	0.8	6
118	Glycopolymer preparation via post-polymerization modification using N-succinimidyl monomers. Polymer Journal, 2019, 51, 617-625.	1.3	6
119	Multi-block and sequence-controlled polymerization of glycopolymers, and interaction with lectin. European Polymer Journal, 2020, 140, 110044.	2.6	6
120	Screening of a glycopolymer library for GM1 mimetics synthesized by the "carbohydrate module method― Chemical Communications, 2021, 57, 10871-10874.	2.2	6
121	Polymer Nanoparticles with Uniform Monomer Sequences for Sequenceâ€5pecific Peptide Recognition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
122	α-Man monolayer formation via Si–C bond formation and protein recognition. Thin Solid Films, 2009, 518, 699-702.	0.8	5
123	Glycosaminoglycan model polymers with Poly(γ-glutamate) backbone to inhibit aggregation of β-Amyloid peptide. Polymer Journal, 2013, 45, 359-362.	1.3	5
124	Facile Preparation of a Glycopolymer Library by PET-RAFT Polymerization for Screening the Polymer Structures of GM1 Mimics. ACS Omega, 2022, 7, 13254-13259.	1.6	5
125	Chemoenzymatic Synthesis of a Multivalent Aminoglycoside. Macromolecular Bioscience, 2003, 3, 662-667.	2.1	4
126	Peculiar Wettability Based on Orientational Change of Self-assembled Hemispherical PAMAM Dendrimer Layer. Chemistry Letters, 2010, 39, 923-925.	0.7	4

#	Article	IF	CITATIONS
127	Preparation and characterization of complex gel of type I collagen and aluminosilicate containing imogolite nanofibers. Journal of Applied Polymer Science, 2010, 118, 2284-2290.	1.3	4
128	Interaction between Multimeric Sulfated Saccharides and Alzheimer Amyloid β (1-42). Chemistry Letters, 2015, 44, 1482-1484.	0.7	4
129	Surface Coating of a Metal Mesh Device Sensor With Gold to Improve the Separation and Sensing of Mammalian Cells. IEEE Sensors Journal, 2016, 16, 5129-5135.	2.4	4
130	Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Advances, 2020, 10, 16679-16686.	1.7	4
131	Verification of the Universal Versatility of a Quantitative Protein Measurement Technique Using a Metal Mesh Device. Analytical Sciences, 2018, 34, 765-770.	0.8	3
132	Regulating Detectable Optical Domain in Sensing Technology Using Metal Mesh Devices and Detection of Submicron-size Particles. Analytical Sciences, 2018, 34, 547-552.	0.8	3
133	Preparation of multifunctional glycopolymers using double orthogonal reactions and the effect of electrostatic groups on the glycopolymer–lectin interaction. Polymer Journal, 2019, 51, 1299-1308.	1.3	3
134	Amplification of Sensor Signals from Metal Mesh Device with Fine Periodic Structure. Analytical Sciences, 2019, 35, 619-623.	0.8	3
135	Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angewandte Chemie, 2020, 132, 689-693.	1.6	3
136	Affinity purification of multifunctional oligomeric ligands synthesizedviacontrolled radical polymerization. Journal of Materials Chemistry B, 2020, 8, 5597-5601.	2.9	3
137	Investigation of the effect of microflow reactor diameter on condensation reactions in <scp>l</scp> -proline-immobilized polymer monoliths. Reaction Chemistry and Engineering, 2021, 7, 55-60.	1.9	3
138	Inhibition of Alzheimer Amyloid Aggregation with Sulfate Glycopolymers. Advances in Science and Technology, 2008, 57, 166-169.	0.2	2
139	Synthesis of Glycodendrimer via Click Chemistry and Protein Affinities. Transactions of the Materials Research Society of Japan, 2008, 33, 729-732.	0.2	2
140	Specific detection of Escherichia coli by using metallic mesh sensor in THz region. , 2014, , .		2
141	Biopolymer monolith for protein purification. Faraday Discussions, 2019, 219, 154-167.	1.6	2
142	Controlling the block sequence of multi-block oligomer ligands for neutralization of a target peptide. Materials Advances, 2020, 1, 604-608.	2.6	2
143	Synthesis of Glycopolymers Carrying 3â€2-Sialyllactose for Suppressing Inflammatory Reaction <i>via</i> Siglec-E. Chemistry Letters, 2022, 51, 308-311.	0.7	2
144	<i>De Novo</i> Design of Star-Shaped Glycoligands with Synthetic Polymer Structures toward an Influenza Hemagglutinin Inhibitor. Biomacromolecules, 2022, 23, 1232-1241.	2.6	2

#	Article	IF	CITATIONS
145	Electronic transport in self-organizing columnar phases. , 2003, , .		1
146	Glyco-Interface to Mimic the Cell Surface Functions. Membrane, 2012, 37, 282-287.	0.0	1
147	Molecular Recognition of Glycopolymer Interface. , 2013, , .		1
148	Inverse pH-response of Temperature-sensitive Copolymers by Combination with Porous CaCO3 Framework. Chemistry Letters, 2015, 44, 1425-1427.	0.7	1
149	Fibronectin Coating on Implant Material Surface Attracted Both Osteoblasts and Bacteria. Chemistry Letters, 2019, 48, 764-767.	0.7	1
150	Preparation of multivalent glycan micro- and nano-arrays: general discussion. Faraday Discussions, 2019, 219, 128-137.	1.6	1
151	Development of microparticle counting sensor based on structural and spectroscopic properties of metal mesh device. Advanced Powder Technology, 2021, 32, 1920-1926.	2.0	1
152	Biofunctional Characteristics of Dendritic Glycocluster Modified Surfaces. Kobunshi Ronbunshu, 2017, 74, 1-9.	0.2	1
153	Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angewandte Chemie, 0, , .	1.6	1
154	Thermoresponsive Biointerface with a Elastin Model Peptide. Kobunshi Ronbunshu, 2010, 67, 584-589.	0.2	0
155	Bioseparation by Saccharide Modified Materials. Trends in Glycoscience and Glycotechnology, 2012, 24, 134-135.	0.0	0
156	Morphology Control of Alzheimer Amyloid β Peptide (1-42) on the Multivalent Sulfonated Sugar Interface. Materials Research Society Symposia Proceedings, 2013, 1498, 203-206.	0.1	0
157	Glycoglycan Mimic by Synthetic Polymers. ACS Symposium Series, 2017, , 69-77.	0.5	0
158	Glycan interactions on glycocalyx mimetic surfaces: general discussion. Faraday Discussions, 2019, 219, 183-188.	1.6	0
159	New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.	1.6	0
160	Glycopolymer Conjugates: Preparation and Functions. , 2021, , 250-262.		0
161	Bio-inert Properties of TEG Modified Dendrimer Interface. Analytical Sciences, 2021, 37, 519-523.	0.8	0
162	Enrichment of Uncommon Bacteria in Soil by Fractionation Using a Metal Mesh Device. Analytical Sciences, 2021, 37, 1295-1300.	0.8	0

#	Article	IF	CITATIONS
163	Preparation and Properties of Dendritic sugar Immobilized Surface. Transactions of the Materials Research Society of Japan, 2008, 33, 733-736.	0.2	0
164	Practical application of sugar microarrays. Trends in Glycoscience and Glycotechnology, 2008, 20, 227-228.	0.0	0
165	Inhibition of Protein Amyloidosis by Glycomaterials. Trends in Glycoscience and Glycotechnology, 2009, 21, 324-334.	0.0	Ο
166	Monolayer formation of hydrocarbons with various reactive groups via photochemical reaction on Si(111)-H surface. Transactions of the Materials Research Society of Japan, 2010, 35, 797-800.	0.2	0
167	In vivo Imaging with Saccharides. Trends in Glycoscience and Glycotechnology, 2010, 22, 259-260.	0.0	Ο
168	Separation capability of proteins using microfluidic system with dendrimer modified surface. Transactions of the Materials Research Society of Japan, 2011, 36, 541-544.	0.2	0
169	Biomaterial Fabrication by Glycoconjugates. Journal of the Society of Powder Technology, Japan, 2011, 48, 124-131.	0.0	Ο
170	Inhibition of Amyloid Aggregation by Polymers Containing Glycosaminoglycan Sulfonate Side Groups. Kobunshi Ronbunshu, 2012, 69, 47-53.	0.2	0
171	Syntheses and Functions of Glycosaminoglycan Mimicking Polymers. , 2018, , 213-224.		Ο
172	Glycan-related Materials and their use for Biomaterials. , 2019, , 329-351.		0
173	Development of Macroporous Polymer Monolith Immobilizing L-Proline-Based Organocatalyst and Application to Flow Asymmetric Aldol Addition Reaction. Kagaku Kogaku Ronbunshu, 2020, 46, 77-83.	0.1	0
174	Effect of Catalyst Support in B12-Based Heterogeneous Catalysts for Catalytic Alkane Oxidations. Bulletin of the Chemical Society of Japan, 2022, 95, 1250-1252.	2.0	0