Lynne Yenush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1719991/publications.pdf

Version: 2024-02-01

		126708	149479
58	5,433	33	56
papers	citations	h-index	g-index
C1	<i>C</i> 1	<i>C</i> 1	F200
61	61	61	5290
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physiological and Molecular Characterization of the Differential Response of Broccoli (<i>Brassica) Tj ETQq1 1 0. Stress. Journal of Agricultural and Food Chemistry, 2021, 69, 10394-10404.</i>	784314 rg 2.4	BT /Overlock 13
2	Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biology, 2021, 21, 488.	1.6	12
3	Distinctive Traits for Drought and Salt Stress Tolerance in Melon (Cucumis melo L.). Frontiers in Plant Science, 2021, 12, 777060.	1.7	16
4	Seed coat lignification level is crucial in Capsicum spp seed longevity. Physiologia Plantarum, 2021, , e13600.	2.6	2
5	Editorial: Ion Homeostasis in Plant Stress and Development. Frontiers in Plant Science, 2020, 11, 618273.	1.7	17
6	Multigene Engineering by GoldenBraid Cloning: From Plants to Filamentous Fungi and Beyond. Current Protocols in Molecular Biology, 2020, 130, e116.	2.9	15
7	Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences, 2019, 20, 2133.	1.8	20
8	BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. Plant Physiology, 2019, 181, 1277-1294.	2.3	25
9	FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genetics and Biology, 2018, 116, 51-61.	0.9	45
10	Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation. Journal of Biological Chemistry, 2017, 292, 563-574.	1.6	11
11	Arabidopsis <i><scp>COGWHEEL</scp>1</i> links light perception and gibberellins with seed tolerance to deterioration. Plant Journal, 2016, 87, 583-596.	2.8	28
12	Evolution by gene duplication of (i) Medicago truncatula PISTILLATA (i)-like transcription factors. Journal of Experimental Botany, 2016, 67, 1805-1817.	2.4	38
13	Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein. Journal of Biological Chemistry, 2016, 291, 14973-14985.	1.6	41
14	Potassium and Sodium Transport in Yeast. Advances in Experimental Medicine and Biology, 2016, 892, 187-228.	0.8	44
15	Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study. PLoS ONE, 2016, 11, e0158424.	1.1	19
16	Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS ONE, 2016, 11, e0166938.	1.1	50
17	A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, fov017.	1.1	18
18	Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Metallomics, 2015, 7, 1338-1351.	1.0	8

#	Article	IF	CITATIONS
19	Systems Biology of Monovalent Cation Homeostasis in Yeast. Advances in Microbial Physiology, 2014, 64, 1-63.	1.0	18
20	<i>ARABIDOPSIS THALIANA HOMEOBOX25</i> Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 2014, 164, 999-1010.	2.3	86
21	Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 2013, 59, 207-230.	0.8	15
22	Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 2013, 13, 97-106.	1.1	33
23	Functional specialization of duplicated AP3â€like genes in <i>Medicago truncatula</i> . Plant Journal, 2013, 73, 663-675.	2.8	43
24	Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling. PLoS Computational Biology, 2012, 8, e1002548.	1.5	37
25	Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes To Cells, 2011, 16, 152-165.	0.5	8
26	A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 1241-1250.	3.4	53
27	Regulation of Trkâ€dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 2010, 584, 2415-2420.	1.3	26
28	The role of K ⁺ and H ⁺ transport systems during glucoseâ€and H ₂ O ₂ â€induced cell death in <i>Saccharomyces cerevisiae</i> Yeast, 2010, 27, 713-725.	0.8	26
29	Hal4 and Hal5 Protein Kinases Are Required for General Control of Carbon and Nitrogen Uptake and Metabolism. Eukaryotic Cell, 2010, 9, 1881-1890.	3.4	25
30	Shared and novel molecular responses of mandarin to drought. Plant Molecular Biology, 2009, 70, 403-420.	2.0	57
31	Key Role for Intracellular K + and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 2007, 27, 5725-5736.	1.1	43
32	An Arabidopsis quiescin-sulfhydryl oxidase regulates cation homeostasis at the root symplast–xylem interface. EMBO Journal, 2007, 26, 3203-3215.	3.5	29
33	pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 2005, 25, 8683-8692.	1.1	84
34	Response of the Saccharomyces cerevisiae Mpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz Protein Phosphatases. Eukaryotic Cell, 2004, 3, 100-107.	3.4	62
35	The translation initiation factor elF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant Journal, 2003, 34, 257-267.	2.8	111
36	Regulation of ENA1 Na + -ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2003, 2, 937-948.	3.4	68

#	Article	IF	CITATIONS
37	Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and $3\hat{a}\in^2$ -phosphoadenosine- $5\hat{a}\in^2$ -phosphate phosphatase activities: a novel target of lithium therapy 1 1Edited by R. Huber. Journal of Molecular Biology, 2002, 315, 677-685.	2.0	40
38	The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO Journal, 2002, 21, 920-929.	3.5	125
39	The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit involved in signal transduction. Structure, 2000, 8, 961-969.	1.6	42
40	The c-Jun NH2-terminal Kinase Promotes Insulin Resistance during Association with Insulin Receptor Substrate-1 and Phosphorylation of Ser307. Journal of Biological Chemistry, 2000, 275, 9047-9054.	1.6	1,216
41	X-ray structure of yeast hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. Journal of Molecular Biology, 2000, 295, 927-938.	2.0	66
42	A novel target of lithium therapy. FEBS Letters, 2000, 467, 321-325.	1.3	30
43	The IRS-Signaling System: A Network of Docking Proteins That Mediate Insulin and Cytokine Action. Current Topics in Microbiology and Immunology, 1998, 228, 179-208.	0.7	220
44	Insulin receptor substrate-2 amino acid polymorphisms are not associated with random type 2 diabetes among Caucasians. Diabetes, 1998, 47, 976-979.	0.3	78
45	The Pleckstrin Homology and Phosphotyrosine Binding Domains of Insulin Receptor Substrate 1 Mediate Inhibition of Apoptosis by Insulin. Molecular and Cellular Biology, 1998, 18, 6784-6794.	1.1	81
46	The IRS-2 Gene on Murine Chromosome 8 Encodes a Unique Signaling Adapter for Insulin and Cytokine Action. Molecular Endocrinology, 1997, 11, 251-262.	3.7	133
47	Heterologous Pleckstrin Homology Domains Do Not Couple IRS-1 to the Insulin Receptor. Journal of Biological Chemistry, 1997, 272, 27716-27721.	1.6	57
48	The 60 kDa Insulin Receptor Substrate Functions Like an IRS Protein (pp60IRS3) in Adipose Cells. Biochemistry, 1997, 36, 8304-8310.	1.2	83
49	The IRS-signalling system during insulin and cytokine action. BioEssays, 1997, 19, 491-500.	1.2	271
50	The <i>Drosophila</i> Insulin Receptor Activates Multiple Signaling Pathways but Requires Insulin Receptor Substrate Proteins for DNA Synthesis. Molecular and Cellular Biology, 1996, 16, 2509-2517.	1.1	88
51	YMXM Motifs and Signaling by an Insulin Receptor Substrate 1 Molecule without Tyrosine Phosphorylation Sites. Molecular and Cellular Biology, 1996, 16, 4147-4155.	1.1	87
52	The Pleckstrin Homology Domain Is the Principle Link between the Insulin Receptor and IRS-1. Journal of Biological Chemistry, 1996, 271, 24300-24306.	1.6	156
53	O-28: Characterization of IRS-1 molecules containing single SH2-protein binding determinants. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 37-38.	0.6	O
54	O-25: Purification and cloning of IRS-2 reveals the molecular bases of IRS-proteins in insulin and cytokine signaling. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 34-35.	0.6	0

#	ARTICLE	IF	CITATION
55	Role of IRS-2 in insulin and cytokine signalling. Nature, 1995, 377, 173-177.	13.7	834
56	Interferon-α Engages the Insulin Receptor Substrate-1 to Associate with the Phosphatidylinositol 3′-Kinase. Journal of Biological Chemistry, 1995, 270, 15938-15941.	1.6	177
57	Role of IRS-1-GRB-2 complexes in insulin signaling Molecular and Cellular Biology, 1994, 14, 3577-3587.	1.1	205
58	DNA-binding and trans-activation properties of Drosophila E2F and DP proteins Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6359-6363.	3.3	153