
Tommaso Selleri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1719489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH ₃ -Mediated Selective Catalytic Reduction. Journal of the American Chemical Society, 2020, 142, 15884-15896.	6.6	110
2	Identification of nitrites/HONO as primary products of NO oxidation over Fe-ZSM-5 and their role in the Standard SCR mechanism: A chemical trapping study. Journal of Catalysis, 2014, 311, 266-270.	3.1	89
3	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€6CR over Cuâ€CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie - International Edition, 2021, 60, 7197-7204.	7.2	77
4	An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts, 2021, 11, 404.	1.6	63
5	An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. Applied Catalysis B: Environmental, 2020, 279, 119397.	10.8	55
6	Investigation of NO2 and NO interaction with an Fe-ZSM-5 catalyst by transient response methods and chemical trapping techniques. Journal of Catalysis, 2015, 328, 258-269.	3.1	41
7	Transient Kinetic Analysis of Low-Temperature NH ₃ -SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu ^{II} . ACS Catalysis, 2021, 11, 4821-4831.	5.5	41
8	NO oxidation on Fe- and Cu-zeolites mixed with BaO/Al2O3: Free oxidation regime and relevance for the NH3-SCR chemistry at low temperature. Applied Catalysis B: Environmental, 2018, 225, 324-331.	10.8	37
9	Mathematical Modeling and Multi-Objective Optimization of a Mini-Channel Heat Exchanger Via Genetic Algorithm. Journal of Thermal Science and Engineering Applications, 2013, 5, .	0.8	27
10	A PGM-free NO _x adsorber + selective catalytic reduction catalyst system (AdSCR) for trapping and reducing NO _x in lean exhaust streams at low temperature. Catalysis Science and Technology, 2018, 8, 2467-2476.	2.1	27
11	Review of Hydrocarbon Poisoning and Deactivation Effects on Cu-Zeolite, Fe-Zeolite, and Vanadium-Based Selective Catalytic Reduction Catalysts for NOx Removal from Lean Exhausts. Industrial & Engineering Chemistry Research, 2021, 60, 6403-6420.	1.8	27
12	The low-temperature interaction of NH3/NO/NO2+ O2 with Fe-ZSM-5 + BaO/Al2O3 and H-ZSM-5 + BaO/Al2O3: Influence of phase separation and relevance for the NH3-SCR chemistry. Applied Catalysis B: Environmental, 2017, 206, 471-478.	10.8	26
13	The Low Temperature Interaction of NOÂ+ÂO2 with a Commercial Cu-CHA Catalyst: A Chemical Trapping Study. Topics in Catalysis, 2016, 59, 678-685.	1.3	25
14	Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere, 2021, 12, 1011.	1.0	24
15	Measuring Emissions from a Demonstrator Heavy-Duty Diesel Vehicle under Real-World Conditions—Moving Forward to Euro VII. Catalysts, 2022, 12, 184.	1.6	24
16	Catalyst systems for selective catalytic reduction + NO _x trapping: from fundamental understanding of the standard SCR reaction to practical applications for lean exhaust after-treatment. Reaction Chemistry and Engineering, 2019, 4, 1165-1178.	1.9	22
17	The impact of light and heavy hydrocarbons on the NH3-SCR activity of commercial Cu- and Fe-zeolite catalysts. Catalysis Today, 2019, 320, 100-111.	2.2	22
18	An efficient reduced model of NH3-SCR converters for mobile aftertreatment systems. Chemical Engineering Journal, 2019, 377, 120053.	6.6	20

TOMMASO SELLERI

#	Article	IF	CITATIONS
19	New Mechanistic Insights in the NH3-SCR Reactions at Low Temperature. Topics in Catalysis, 2016, 59, 907-912.	1.3	18
20	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€SCR over Cuâ€CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie, 2021, 133, 7273-7280.	1.6	15
21	Analysis of AdSCR Systems for NOx Removal During the Cold-Start Period of Diesel Engines. Topics in Catalysis, 2019, 62, 3-9.	1.3	14
22	Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars. Sensors, 2021, 21, 8325.	2.1	13
23	On-Road and Laboratory Emissions from Three Gasoline Plug-In Hybrid Vehicles—Part 1: Regulated and Unregulated Gaseous Pollutants and Greenhouse Gases. Energies, 2022, 15, 2401.	1.6	13
24	NH3 and N2O Real World Emissions Measurement from a CNG Heavy Duty Vehicle Using On-Board Measurement Systems. Applied Sciences (Switzerland), 2021, 11, 10055.	1.3	11
25	On-road emissions of Euro 6d-TEMP passenger cars on Alpine routes during the winter period. Environmental Science Atmospheres, 2021, 1, 125-139.	0.9	10
26	NH3 and CO Emissions from Fifteen Euro 6d and Euro 6d-TEMP Gasoline-Fuelled Vehicles. Catalysts, 2022, 12, 245.	1.6	10
27	Unexpected Low-Temperature deNOx Activity of AdSCR Systems for Cold Start NOx Abatement. Emission Control Science and Technology, 2020, 6, 402-409.	0.8	8
28	Evaluation of Measurement Procedures for Solid Particle Number (SPN) Measurements during the Periodic Technical Inspection (PTI) of Vehicles. International Journal of Environmental Research and Public Health, 2022, 19, 7602.	1.2	8
29	Modelling Inhibition Effects of Short-Chain Hydrocarbons on a Small-Pore Cu-Zeolite NH3-SCR Catalyst. Topics in Catalysis, 2017, 60, 214-219.	1.3	3
30	Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles. Catalysts, 2022, 12, 651.	1.6	3
31	Assessment of retrofit devices for the Horizon 2020 Cleanest Engine and Vehicle Retrofit Prizes. Silniki Spalinowe, 0, , .	0.4	1