
Jacopo Boaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1719334/publications.pdf Version: 2024-02-01

ΙΛΟΟΡΟ ΒΟΛΟΛ

#	Article	IF	CITATIONS
1	Velocity gradients choice affecting seismic site response in deep alluvial basins: Application to the Venetian Plain (Northern Italy). Journal of Geophysics and Engineering, 2022, 19, 1-13.	1.4	5
2	Characterization of Distant and Moderate Earthquakes with Inexpensive MEMS Sensors: Application to the Mw 6.3, 29th December 2020, Petrinja Event. Sensors, 2022, 22, 4166.	3.8	0
3	Impact of Anthropogenic Activities on Underwater Noise Pollution in Venice. Water, Air, and Soil Pollution, 2022, 233, .	2.4	Ο
4	Electrical and Electromagnetic Geophysical Prospecting for the Monitoring of Rock Glaciers in the Dolomites, Northeast Italy. Sensors, 2021, 21, 1294.	3.8	10
5	Tackling Lateral Variability Using Surface Waves: A Tomography-Like Approach. Surveys in Geophysics, 2021, 42, 317-338.	4.6	5
6	Small Local Earthquake Detection Using Low-Cost MEMS Accelerometers: Examples in Northern and Central Italy. The Seismic Record, 2021, 1, 20-26.	3.1	11
7	Impact of genesis and abandonment processes of a fluvial meander on geometry and grain-size distribution of the associated point bar (Venetian Plain, Italy). Marine and Petroleum Geology, 2021, 127, 104951.	3.3	9
8	Thermal modeling of a Swiss urban aquifer and implications for geothermal heat pump systems. Hydrogeology Journal, 2021, 29, 2187.	2.1	4
9	Multi-drive level Vibroseis test to evaluate the non-linear response of soft soils. Soil Dynamics and Earthquake Engineering, 2021, 149, 106861.	3.8	1
10	The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy. Scientific Reports, 2020, 10, 9404.	3.3	57
11	Geophysical and Sedimentological Investigations Integrate Remote-Sensing Data to Depict Geometry of Fluvial Sedimentary Bodies: An Example from Holocene Point-Bar Deposits of the Venetian Plain (Italy). Remote Sensing, 2020, 12, 2568.	4.0	11
12	Remote Sensing, Archaeological, and Geophysical Data to Study the Terramare Settlements: The Case Study of Fondo Paviani (Northern Italy). Remote Sensing, 2020, 12, 2617.	4.0	8
13	A Comparison of Frequency Domain Electro-Magnetometry, Electrical Resistivity Tomography and Borehole Temperatures to Assess the Presence of Ice in a Rock Glacier. Frontiers in Earth Science, 2020, 8, .	1.8	9
14	Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-Ã-la-masse: a vineyard infiltration experiment. Soil, 2020, 6, 95-114.	4.9	27
15	Ground-based remote sensing of the shallow subsurface: Geophysical methods for environmental applications. Developments in Earth Surface Processes, 2020, , 55-89.	2.8	3
16	Resolving the thickness of peat deposits with contact-less electromagnetic methods: A case study in the Venice coastland. Science of the Total Environment, 2020, 737, 139361.	8.0	18
17	Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study. Science of the Total Environment, 2019, 648, 1105-1120.	8.0	32
18	Application of surface waves for detecting lateral variations: buried inclined plane. Near Surface Geophysics, 2019, 17, 501-531.	1.2	6

JACOPO BOAGA

#	Article	IF	CITATIONS
19	A comparative analysis of time–depth relationships derived from scientific ocean drilling expeditions. Marine Geophysical Researches, 2019, 40, 635-641.	1.2	3
20	2016 Central Italy Earthquakes Recorded by Lowâ€Cost MEMSâ€Distributed Arrays. Seismological Research Letters, 2019, 90, 672-682.	1.9	7
21	Comparing ERT- and scaling-based approaches to parameterize soil hydraulic properties for spatially distributed model applications. Advances in Water Resources, 2019, 126, 155-167.	3.8	14
22	Detection of lateral discontinuities via surface waves analysis: A case study at a derelict industrial site. Journal of Applied Geophysics, 2019, 164, 65-74.	2.1	4
23	An Integrated Approach Supporting Remediation of an Aquifer Contaminated with Chlorinated Solvents by a Combination of Adsorption and Biodegradation. Applied Sciences (Switzerland), 2019, 9, 4318.	2.5	18
24	Multidisciplinary Analysis and Modelling of a River Embankment Affected by Piping. Lecture Notes in Civil Engineering, 2019, , 234-244.	0.4	5
25	Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy. Hydrogeology Journal, 2018, 26, 837-851.	2.1	11
26	Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes. Scientific Reports, 2018, 8, 1708.	3.3	23
27	Conceptualization of Water Flow Pathways in Agricultural Terraced Landscapes. Land Degradation and Development, 2018, 29, 651-662.	3.9	43
28	Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. Journal of Hydrology, 2018, 556, 310-324.	5.4	46
29	Seismic survey on an open pingo system in Adventdalen Valley, Spitsbergen, Svalbard. Near Surface Geophysics, 2018, 16, 89-103.	1.2	15
30	Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-Ã-la-masse method. Hydrology and Earth System Sciences, 2018, 22, 5427-5444.	4.9	35
31	Passive seismic prospecting in Venice historical center for impedance contrast mapping. Environmental Earth Sciences, 2018, 77, 1.	2.7	10
32	Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 2018, 11, 782-789.	12.9	183
33	The use of FDEM in hydrogeophysics: A review. Journal of Applied Geophysics, 2017, 139, 36-46.	2.1	40
34	Partial root-zone drying irrigation in orange orchards: Effects on water use and crop production characteristics. European Journal of Agronomy, 2017, 82, 190-202.	4.1	82
35	Insights into bedrock surface morphology using low-cost passive seismic surveys and integrated geostatistical analysis. Science of the Total Environment, 2017, 578, 186-202.	8.0	13
36	Integrated seismic characterization for deep engineering targets: active and passive surface waves,		0

³⁶ reflection and refraction near-surface modelling from a single 2D acquisition. , 2017, , .

JACOPO BOAGA

#	Article	IF	CITATIONS
37	Frequency-dependent multi-offset phase analysis of surface waves: an example of high-resolution characterization of a riparian aquifer. Geophysical Prospecting, 2016, 64, 102-111.	1.9	20
38	Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics. Journal of Applied Geophysics, 2016, 128, 58-67.	2.1	21
39	Combined geophysical surveys for the characterization of a reconstructed river embankment. Engineering Geology, 2016, 211, 74-84.	6.3	60
40	Integrated geophysical-geological model for seismic local site response: the Caldes alpine slope case (Southern Alps, NE Italy). Environmental Earth Sciences, 2016, 75, 1.	2.7	0
41	Soil–plant interaction monitoring: Small scale example of an apple orchard in Trentino, North-Eastern Italy. Science of the Total Environment, 2016, 543, 851-861.	8.0	39
42	Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrology and Earth System Sciences, 2015, 19, 2213-2225.	4.9	76
43	HVSR technique in near-surface thermal-basin characterization: the example of the Caldiero district (North-East Italy). Environmental Earth Sciences, 2015, 74, 1199-1210.	2.7	9
44	Double-array refraction microtremors. Journal of Applied Geophysics, 2015, 121, 31-41.	2.1	13
45	Soil damping influence on seismic ground response: A parametric analysis for weak to moderate ground motion. Soil Dynamics and Earthquake Engineering, 2015, 79, 71-79.	3.8	16
46	Tectonically driven deposition and landscape evolution within upland incised valleys: Ambra Valley fill, Pliocene–Pleistocene, Tuscany, Italy. Sedimentology, 2015, 62, 897-927.	3.1	22
47	Measuring and modeling water-related soil–vegetation feedbacks in a fallow plot. Hydrology and Earth System Sciences, 2014, 18, 1105-1118.	4.9	15
48	HVSR technique as tool for thermal-basin characterization: a field example in N-E Italy. Environmental Earth Sciences, 2014, 71, 4433-4446.	2.7	14
49	River embankment characterization: The joint use of geophysical and geotechnical techniques. Journal of Applied Geophysics, 2014, 110, 5-22.	2.1	43
50	Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environmental Science and Pollution Research, 2014, 21, 8914-8931.	5.3	55
51	Plantâ€soil interactions in salt marsh environments: Experimental evidence from electrical resistivity tomography in the Venice Lagoon. Geophysical Research Letters, 2014, 41, 6160-6166.	4.0	28
52	The Influence of Subsoil Structure and Acquisition Parameters in MASW Mode Mis-identification. Journal of Environmental and Engineering Geophysics, 2014, 19, 87-99.	0.5	13
53	Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure. Geophysics, 2013, 78, EN17-EN28.	2.6	68
54	An efficient tool for cultural heritage seismic soil classification: frequencytime analysis method in Venice historical center and its lagoon (Italy). Geosciences Journal, 2013, 17, 301-311.	1.2	6

JACOPO BOAGA

#	Article	IF	CITATIONS
55	Monitoring Soil-plant Interactions in an Apple Orchard Using 3D Electrical Resistivity Tomography. Procedia Environmental Sciences, 2013, 19, 394-402.	1.4	19
56	Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy). Sedimentary Geology, 2013, 289, 19-39.	2.1	35
57	Reply to comment on â€~Shear wave profile from surface wave inversion: the impact of uncertainty on seismic site response analysis'. Journal of Geophysics and Engineering, 2012, 9, 244-246.	1.4	8
58	Geophysical characterization of a small pre-Alpine catchment. Journal of Applied Geophysics, 2012, 80, 32-42.	2.1	21
59	Noninvasive Monitoring of Soil Static Characteristics and Dynamic States: A Case Study Highlighting Vegetation Effects on Agricultural Land. Vadose Zone Journal, 2012, 11, vzj2011.0195.	2.2	42
60	From surface wave inversion to seismic site response prediction: Beyond the 1D approach. Soil Dynamics and Earthquake Engineering, 2012, 36, 38-51.	3.8	17
61	Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis. Journal of Geophysics and Engineering, 2011, 8, 162-174.	1.4	58
62	Indexes and physical parameters for the litho-stratigraphic model of Venice. Rendiconti Lincei, 2010, 21, 229-238.	2.2	6
63	Shear wave structural models of Venice Plain, Italy, from Time Cross Correlation of seismic noise. Engineering Geology, 2010, 116, 189-195.	6.3	16
64	Expedition 367/368 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	11
65	Expedition 367/368 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
66	Site U1499. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
67	Site U1500. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	10
68	Site U1501. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
69	Site U1502. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
70	Site U1504. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
71	2016 Central Italy Earthquakes: comparison between GPS signals and low-cost distributed MEMS arrays. Advances in Geosciences, 0, 51, 1-14.	12.0	3
72	Site U1505. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2

#	Article	IF	Citations
73	Site U1503. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	3
74	From electromagnetic to sediment textural maps: an integrated approach to unravel the intra-point-bar variability of sediment properties, Journal of the Geological Society, 0, igs2021-156.	2.1	3

74 intra-point-bar variability of sediment properties. Journal of the Geological Society, 0, , jgs2021-156.