
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1719129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc nutrition and dietary zinc supplements. Critical Reviews in Food Science and Nutrition, 2023, 63, 1277-1292.	5.4	20
2	Zinc homeostasis and regulation: Zinc transmembrane transport through transporters. Critical Reviews in Food Science and Nutrition, 2023, 63, 7627-7637.	5.4	14
3	Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. Food Reviews International, 2022, 38, 812-828.	4.3	7
4	PM1-loaded recombinant human H-ferritin nanocages: A novel pH-responsive sensing platform for the identification of cancer cells. International Journal of Biological Macromolecules, 2022, 199, 223-233.	3.6	9
5	A short helix regulates conversion of dimeric and 24-meric ferritin architectures. International Journal of Biological Macromolecules, 2022, 203, 535-542.	3.6	3
6	Structural comparison between the DNA-protective ability of scallop and shrimp ferritin from iron-induced oxidative damage. Food Chemistry, 2022, 386, 132827.	4.2	6
7	Construction of alginate beads for efficient conversion of CO2 into vaterite CaCO3 particles. Food Hydrocolloids, 2022, 130, 107693.	5.6	4
8	The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods, 2022, 11, 557.	1.9	7
9	Roles of homopolymeric apoferritin in alleviating alcohol-induced liver injury. Food Bioscience, 2022, , 101794.	2.0	0
10	Designing Stacked Assembly of Type III Rubisco for CO ₂ Fixation with Higher Efficiency. Journal of Agricultural and Food Chemistry, 2022, 70, 7049-7057.	2.4	2
11	Construction of three-dimensional interleaved protein hetero-superlattices in solution by cooperative electrostatic and aromatic stacking interactions. Journal of Colloid and Interface Science, 2021, 582, 1-11.	5.0	19
12	Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chemical Society Reviews, 2021, 50, 3957-3989.	18.7	47
13	Ferritin with Atypical Ferroxidase Centers Takes B-Channels as the Pathway for Fe ²⁺ Uptake from <i>Mycoplasma</i> . Inorganic Chemistry, 2021, 60, 7207-7216.	1.9	9
14	Weak Binding of Epigallocatechin to α-Lactalbumin Greatly Improves Its Stability and Uptake by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2021, 69, 8482-8491.	2.4	9
15	Construction of thermally robust and porous shrimp ferritin crystalline for molecular encapsulation through intermolecular arginine-arginine attractions. Food Chemistry, 2021, 349, 129089.	4.2	7
16	Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. International Journal of Molecular Sciences, 2021, 22, 7859.	1.8	9
17	Binding of Chloroquine to Whey Protein Relieves Its Cytotoxicity while Enhancing Its Uptake by Cells. Journal of Agricultural and Food Chemistry, 2021, 69, 10669-10677.	2.4	7
18	Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nature Communications, 2021, 12, 4849.	5.8	13

#	Article	IF	CITATIONS
19	Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnology Advances, 2021, 52, 107835.	6.0	26
20	Hyperthermostability of prawn ferritin nanocage facilitates its application as a robust nanovehicle for nutraceuticals. International Journal of Biological Macromolecules, 2021, 191, 152-160.	3.6	12
21	Chicoric acid encapsulated within ferritin inhibits tau phosphorylation by regulating AMPK and GluT1 signaling cascade. Journal of Functional Foods, 2021, 86, 104681.	1.6	8
22	The development of natural and designed protein nanocages for encapsulation and delivery of active compounds. Food Hydrocolloids, 2021, 121, 107004.	5.6	29
23	Shrimp ferritin greatly improves the physical and chemical stability of astaxanthin. Journal of Food Science, 2021, 86, 5295-5306.	1.5	9
24	Reversible structure transformation between protein nanocages and nanorods controlled by small molecules. Chemical Communications, 2021, 57, 12996-12999.	2.2	1
25	Effect of molecular weight of chitosan and its oligosaccharides on antitumor activities of chitosan-selenium nanoparticles. Carbohydrate Polymers, 2020, 231, 115689.	5.1	79
26	Structural Insight into Binary Protein Metal–Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes. Chemistry - A European Journal, 2020, 26, 3016-3021.	1.7	19
27	Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. Nanomaterials, 2020, 10, 1894.	1.9	57
28	16-Mer ferritin-like protein templated gold nanoclusters for bioimaging detection of methylmercury in the brain of living mice. Analytica Chimica Acta, 2020, 1127, 149-155.	2.6	19
29	His-Mediated Reversible Self-Assembly of Ferritin Nanocages through Two Different Switches for Encapsulation of Cargo Molecules. ACS Nano, 2020, 14, 17080-17090.	7.3	38
30	Converting histidine-induced 3D protein arrays in crystals into their 3D analogues in solution by metal coordination cross-linking. Communications Chemistry, 2020, 3, .	2.0	8
31	Re-designing ferritin nanocages for mercuric ion detection. Analyst, The, 2019, 144, 5890-5897.	1.7	9
32	Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Advances, 2019, 9, 24777-24782.	1.7	21
33	Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions. Chemical Communications, 2019, 55, 11299-11302.	2.2	9
34	Design and site-directed compartmentalization of gold nanoclusters within the intrasubunit interfaces of ferritin nanocage. Journal of Nanobiotechnology, 2019, 17, 79.	4.2	16
35	Disulfide-mediated reversible two-dimensional self-assembly of protein nanocages. Chemical Communications, 2019, 55, 7510-7513.	2.2	18
36	Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs. Nano Letters, 2019, 19, 4023-4028.	4.5	31

GUANGHUA ZHAO

#	Article	IF	CITATIONS
37	Thermal Treatment Greatly Improves Storage Stability and Monodispersity of Pea Seed Ferritin. Journal of Food Science, 2019, 84, 1188-1193.	1.5	13
38	Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages. Nature Communications, 2019, 10, 778.	5.8	32
39	Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Critical Reviews in Food Science and Nutrition, 2019, 59, S81-S95.	5.4	38
40	AB loop engineered ferritin nanocages for drug loading under benign experimental conditions. Chemical Communications, 2019, 55, 12344-12347.	2.2	15
41	Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Critical Reviews in Food Science and Nutrition, 2018, 58, 689-699.	5.4	28
42	Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (<i>Crassostrea gigas</i>) protein. Food and Function, 2018, 9, 6391-6400.	2.1	30
43	On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues. ACS Nano, 2018, 12, 11323-11332.	7.3	49
44	Selective Elimination of the Key Subunit Interfaces Facilitates Conversion of Native 24-mer Protein Nanocage into 8-mer Nanorings. Journal of the American Chemical Society, 2018, 140, 14078-14081.	6.6	27
45	Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives. Pharmaceuticals, 2018, 11, 39.	1.7	7
46	The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin. Protein Science, 2018, 27, 1955-1960.	3.1	28
47	Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends in Food Science and Technology, 2018, 78, 83-94.	7.8	103
48	Interactions between plant proteins/enzymes and other food components, and their effects on food quality. Critical Reviews in Food Science and Nutrition, 2017, 57, 1718-1728.	5.4	19
49	Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Critical Reviews in Food Science and Nutrition, 2017, 57, 3673-3683.	5.4	64
50	Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Journal of Nanobiotechnology, 2017, 15, 4.	4.2	197
51	Preparation of hypocrellin B nanocages in self-assembled apoferritin for enhanced intracellular uptake and photodynamic activity. Journal of Materials Chemistry B, 2017, 5, 1980-1987.	2.9	19
52	Nanomaterials: The Size Flexibility of Ferritin Nanocage Opens a New Way to Prepare Nanomaterials (Small 37/2017). Small, 2017, 13, .	5.2	1
53	The Size Flexibility of Ferritin Nanocage Opens a New Way to Prepare Nanomaterials. Small, 2017, 13, 1701045.	5.2	37

54 Structure, Function, and Nutrition of Ferritin from Foodstuffs. , 2017, , 1-31.

4

2

#	Article	IF	CITATIONS
55	Structure, Function, and Nutrition of Zinc-Containing Proteins in Foodstuffs. , 2017, , 63-88.		0
56	Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food Chemistry, 2016, 213, 260-267.	4.2	40
57	Conversion of the Native 24â€mer Ferritin Nanocage into Its Nonâ€Native 16â€mer Analogue by Insertion of Extra Amino Acid Residues. Angewandte Chemie, 2016, 128, 16298-16304.	1.6	3
58	Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions. Chemical Communications, 2016, 52, 7402-7405.	2.2	69
59	Nanomolar Hg ²⁺ Detection Using β-Lactoglobulin-Stabilized Fluorescent Gold Nanoclusters in Beverage and Biological Media. Analytical Chemistry, 2016, 88, 10275-10283.	3.2	89
60	Conversion of the Native 24â€mer Ferritin Nanocage into Its Nonâ€Native 16â€mer Analogue by Insertion of Extra Amino Acid Residues. Angewandte Chemie - International Edition, 2016, 55, 16064-16070.	7.2	33
61	"Silent―Amino Acid Residues at Key Subunit Interfaces Regulate the Geometry of Protein Nanocages. ACS Nano, 2016, 10, 10382-10388.	7.3	35
62	Isolation and characterisation of tropomyosin from shrimp (Penaeus vannamei Boone) and its association property at high ionic strength. Natural Product Research, 2016, 30, 115-119.	1.0	3
63	Physicochemical and Functional Properties of Chinese Jujube (<i>ziziphus jujube</i> mill.) Seeds Protein Concentrate. Food Science and Technology Research, 2015, 21, 95-102.	0.3	2
64	Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydrate Polymers, 2015, 134, 158-166.	5.1	143
65	Self-assembly of the sodium salts of fatty acids into limpid hydrogels through non-covalent interactions with peptides. RSC Advances, 2015, 5, 61719-61724.	1.7	9
66	Bioavailability of iron from plant and animal ferritins. Journal of Nutritional Biochemistry, 2015, 26, 532-540.	1.9	37
67	Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. Journal of Cereal Science, 2015, 61, 86-93.	1.8	63
68	Structure, Function, and Nutrition of Phytoferritin: A Newly Functional Factor for Iron Supplement. Critical Reviews in Food Science and Nutrition, 2014, 54, 1342-1352.	5.4	47
69	Phytoferritin Association Induced by EGCG Inhibits Protein Degradation by Proteases. Plant Foods for Human Nutrition, 2014, 69, 386-391.	1.4	16
70	Antidepressant-like effects of the hydroalcoholic extracts of Hemerocallis Citrina and its potential active components. BMC Complementary and Alternative Medicine, 2014, 14, 326.	3.7	45
71	A novel calcium supplement prepared by phytoferritin nanocages protects against absorption inhibitors through a unique pathway. Bone, 2014, 64, 115-123.	1.4	26
72	Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry, 2014, 149, 307-312.	4.2	133

#	Article	IF	CITATIONS
73	Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Research International, 2014, 62, 183-192.	2.9	107
74	The interaction of phenolic acids with Fe(III) in the presence of citrate as studied by isothermal titration calorimetry. Food Chemistry, 2014, 157, 302-309.	4.2	23
75	Self-assembly of NH2-(α,I-lysine)5-COOH and SDS into nanodiscs or nanoribbons regulated by pH. Chemical Communications, 2014, 50, 9943-9946.	2.2	4
76	2D square arrays of protein nanocages through channel-directed electrostatic interactions with poly(1±, l-lysine). Chemical Communications, 2014, 50, 2879.	2.2	33
77	Self-assembly of ferritin nanocages into linear chains induced by poly(α,l-lysine). Chemical Communications, 2014, 50, 481-483.	2.2	51
78	Four-Fold Channels Are Involved in Iron Diffusion into the Inner Cavity of Plant Ferritin. Biochemistry, 2014, 53, 2232-2241.	1.2	26
79	A novel homopolymeric phytoferritin from chickpea seeds with high stability. European Food Research and Technology, 2014, 239, 777-783.	1.6	6
80	The interaction of DNA with phytoferritin during iron oxidation. Food Chemistry, 2014, 153, 292-297.	4.2	11
81	Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International, 2014, 62, 1147-1153.	2.9	109
82	Different effects of temperature on supramolecular protein and non-protein materials in hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 991-998.	3.8	2
83	Zn2+ rather than Ca2+ or Mg2+ used as a cofactor in non-muscular actin from the oyster to control protein polymerization. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4179-4188.	1.1	10
84	NADH induces iron release from pea seed ferritin: A model for interaction between coenzyme and protein components in foodstuffs. Food Chemistry, 2013, 141, 3851-3858.	4.2	33
85	Isolation and characterization of a new phytoferritin from broad bean (Vicia faba) seed with higher stability compared to pea seed ferritin. Food Research International, 2012, 48, 271-276.	2.9	11
86	Binding properties of apoferritin to nicotinamide and calcium. European Food Research and Technology, 2012, 235, 893-899.	1.6	4
87	Effect of high hydrostatic pressure (HHP) on structure and activity of phytoferritin. Food Chemistry, 2012, 130, 273-278.	4.2	36
88	Effect of tannic acid on properties of soybean (Glycine max) seed ferritin: A model for interaction between naturally-occurring components in foodstuffs. Food Chemistry, 2012, 133, 410-415.	4.2	38
89	A novel strategy of natural plant ferritin to protect DNA from oxidative damage during iron oxidation. Free Radical Biology and Medicine, 2012, 53, 375-382.	1.3	18
90	Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Research International, 2011, 44, 33-38.	2.9	40

#	Article	IF	CITATIONS
91	Optimization of Extraction Process of Crude Protein from Grape Seeds by RSM. Food Science and Technology Research, 2011, 17, 437-445.	0.3	18
92	Physicochemical characteristics and functional properties of grape (<i>Vitis vinifera L.</i>) seeds protein. International Journal of Food Science and Technology, 2011, 46, 635-641.	1.3	26
93	Chitinase III in pomegranate seeds (<i>Punica granatum</i> Linn.): a highâ€capacity calciumâ€binding protein in amyloplasts. Plant Journal, 2011, 68, 765-776.	2.8	29
94	ENERGY REQUIREMENT AND QUALITY ASPECTS OF CHINESE JUJUBE (<i>ZIZYPHUS JUJUBA MILLER</i>) IN HOT AIR DRYING FOLLOWED BY MICROWAVE DRYING. Journal of Food Process Engineering, 2011, 34, 491-510.	1.5	30
95	Proanthocyanidins Inhibit Iron Absorption from Soybean (Glycine max) Seed Ferritin in Rats with Iron Deficiency Anemia. Plant Foods for Human Nutrition, 2011, 66, 212-217.	1.4	47
96	Purification and characterization of a new 11S globulin-like protein from Chinese jujube (Ziziphus) Tj ETQq0 0 0 r	gBT /Over 1.6	lock 10 Tf 50
07	Effect on garlic greening and thermal stability of 1-(2′-hydroxybenzene-1′-carboxy-ethyl) pyrrole.	16	4

97	European Food Research and Technology, 2011, 232, 389-395.	1.6	4
98	Study of the physicochemical properties of the BSA: flavonoid nanoparticle. European Food Research and Technology, 2011, 233, 275-283.	1.6	21
99	Protein Association and Dissociation Regulated by Extension Peptide: A Mode for Iron Control by Phytoferritin in Seeds. Plant Physiology, 2010, 154, 1481-1491.	2.3	34
100	A novel EP-involved pathway for iron release from soya bean seed ferritin. Biochemical Journal, 2010, 427, 313-321.	1.7	45
101	Purification and characterization of a new 11S globulin-like protein from grape (Vitis vinifera L.) seeds. European Food Research and Technology, 2010, 230, 693-699.	1.6	13
102	Characterization of a new yellow pigment from model reaction system related to garlic greening. European Food Research and Technology, 2010, 230, 973-979.	1.6	12
103	Synthesis and characterization of novel sulfur-containing 2-(1H-pyrrolyl) carboxylic acids and their effects on garlic greening. European Food Research and Technology, 2010, 231, 555-561.	1.6	2
104	Effects of microwave and ultrasonic wave treatment on inactivation of <i>Alicyclobacillus</i> . International Journal of Food Science and Technology, 2010, 45, 459-465.	1.3	16
105	Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Plant Breeding, 2010, 129, 87-91.	1.0	26
106	Role of H-1 and H-2 Subunits of Soybean Seed Ferritin in Oxidative Deposition of Iron in Protein. Journal of Biological Chemistry, 2010, 285, 32075-32086.	1.6	38
107	Purification and characterization of new phytoferritin from black bean (Phaseolus vulgaris L.) seed. Journal of Biochemistry, 2010, 147, 679-688.	0.9	12
108	Comparative Study on Iron Release from Soybean (<i>Glycine max</i>) Seed Ferritin Induced by Anthocyanins and Ascorbate. Journal of Agricultural and Food Chemistry, 2010, 58, 635-641.	2.4	35

#	Article	IF	CITATIONS
109	Phytoferritin and its implications for human health and nutrition. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 815-823.	1.1	120
110	Protein Association and Dissociation Regulated by Ferric Ion. Journal of Biological Chemistry, 2009, 284, 16743-16751.	1.6	56
111	Two different H-type subunits from pea seed (Pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie, 2009, 91, 230-239.	1.3	36
112	Phosphate facilitates Fe(II) oxidative deposition in pea seed (PisumÂsativum) ferritin. Biochimie, 2009, 91, 1475-1481.	1.3	17
113	Optimization of Microwave-Assisted Extraction of Astaxanthin from Haematococcus Pluvialis by Response Surface Methodology and Antioxidant Activities of the Extracts. Separation Science and Technology, 2009, 44, 243-262.	1.3	48
114	Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma. European Food Research and Technology, 2008, 226, 499-505.	1.6	44
115	Correlation of methylglyoxal with acrylamide formation in fructose/asparagine Maillard reaction model system. Food Chemistry, 2008, 108, 885-890.	4.2	23
116	Facilitated Diffusion of Iron(II) and Dioxygen Substrates into Human H-Chain Ferritin. A Fluorescence and Absorbance Study Employing the Ferroxidase Center Substitution Y34W. Journal of the American Chemical Society, 2008, 130, 17801-17811.	6.6	107
117	Characterization and the Immune Regulation Activities in Vitro of Se-GL-P, an Antioxidant Selenium-Containing Protein from Se-Enriched Ganoderma Lucidum Mushroom. , 2008, , .		Ο
118	Purification and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma Lucidum mushroom and its Se-dependent radical scavenging activity. European Food Research and Technology, 2007, 224, 659-665.	1.6	44
119	Deuterium isotope effects on iron core formation in ferritin. Hyperfine Interactions, 2007, 165, 333-338.	0.2	3
120	Iron(II) and Hydrogen Peroxide Detoxification by Human H-Chain Ferritin. An EPR Spin-Trapping Study. Biochemistry, 2006, 45, 3429-3436.	1.2	87
121	Oxidation of Good's buffers by hydrogen peroxide. Analytical Biochemistry, 2006, 349, 262-267.	1.1	50
122	Effects of Inhibitory Environmental Factors on Growth of <i>Oenococcus oeni</i> CCSYU2068 for Malolactic Fermentation of Cider Production. Journal of the Institute of Brewing, 2005, 111, 223-228.	0.8	8
123	Origin of the Unusual Kinetics of Iron Deposition in Human H-Chain Ferritin. Journal of the American Chemical Society, 2005, 127, 3885-3893.	6.6	81
124	μ-1,2-Peroxo Diferric Complex Formation in Horse Spleen Ferritin. A Mixed H/L-Subunit Heteropolymer. Journal of Molecular Biology, 2005, 352, 467-477.	2.0	27
125	Synthesis and DNA-binding properties of binuclear platinum complexes with two trans-[Pt(NH3)2Cl]+ units bridged by 4,4?-dipyridyl sulfide or selenide. Transition Metal Chemistry, 2004, 29, 607-612.	0.7	9
126	Fermentation Kinetics of Different Sugars by Apple Wine Yeast <i>Saccharomyces cerevisiae</i> . Journal of the Institute of Brewing, 2004, 110, 340-346.	0.8	69

#	Article	IF	CITATIONS
127	Multiple Pathways for Mineral Core Formation in Mammalian Apoferritin. The Role of Hydrogen Peroxideâ€. Biochemistry, 2003, 42, 3142-3150.	1.2	151
128	Iron and Hydrogen Peroxide Detoxification Properties of DNA-binding Protein from Starved Cells. Journal of Biological Chemistry, 2002, 277, 27689-27696.	1.6	357
129	Deuterium Structural Effects in Inorganic and Bioinorganic Aggregates. Journal of the American Chemical Society, 2002, 124, 3042-3049.	6.6	19
130	Is Hydrogen Peroxide Produced during Iron(II) Oxidation in Mammalian Apoferritins?. Biochemistry, 2001, 40, 10832-10838.	1.2	68