Sushant Shendre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	1.6	134
2	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
3	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	7.8	56
4	Lightâ€Emitting Diodes with Cuâ€Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dualâ€Emission to White Light. Small, 2019, 15, 1901983.	5.2	45
5	Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd _{1â^'x} Zn _x S colloidal core/crown@alloyed-shell quantum wells. Nanoscale, 2019, 11, 301-310.	2.8	44
6	Electrically control amplified spontaneous emission in colloidal quantum dots. Science Advances, 2019, 5, eaav3140.	4.7	43
7	Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nature Communications, 2020, 11, 3305.	5.8	39
8	Coreless Fiberâ€Based Whisperingâ€Galleryâ€Mode Assisted Lasing from Colloidal Quantum Well Solids. Advanced Functional Materials, 2020, 30, 1907417.	7.8	31
9	Magneto-Optics of Excitons Interacting with Magnetic Ions in CdSe/CdMnS Colloidal Nanoplatelets. ACS Nano, 2020, 14, 9032-9041.	7.3	20
10	Blue-Emitting CdSe Nanoplatelets Enabled by Sulfur-Alloyed Heterostructures for Light-Emitting Diodes with Low Turn-on Voltage. ACS Applied Nano Materials, 2022, 5, 1367-1376.	2.4	14
11	Exciton Dynamics in Colloidal Quantum-Dot LEDs under Active Device Operations. ACS Photonics, 2018, 5, 480-486.	3.2	11
12	Optically detected magnetic resonance in CdSe/CdMnS nanoplatelets. Nanoscale, 2020, 12, 21932-21939.	2.8	10
13	Onâ€Chip Mercuryâ€Free Deepâ€UV Lightâ€Emitting Sources with Ultrahigh Germicidal Efficiency. Advanced Optical Materials, 2021, 9, 2100072.	3.6	10
14	CdSe/CdMnS Nanoplatelets with Bilayer Core and Magnetically Doped Shell Exhibit Switchable Excitonic Circular Polarization: Implications for Lasers and Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 3151-3156.	2.4	9