## Haibo Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1718186/publications.pdf Version: 2024-02-01



ΗλιβΟ ΖΗΛΙ

|    | Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: Tradeoffs                                                                                   |     |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 1  | in water savings, cost, and capacity shortfalls. Applied Energy, 2022, 306, 117997.                                                                                                      | 5.1 | 7  |
| 2  | Many Hands Make Light Work: Widening the U.S. Path Forward from COP26. Environmental Science<br>& Technology, 2022, 56, 10-12.                                                           | 4.6 | 6  |
| 3  | Microwave-accelerated regeneration of a non-aqueous slurry for energy-efficient carbon sequestration. Materials Today Sustainability, 2022, 19, 100168.                                  | 1.9 | 5  |
| 4  | lt is Time to Invest in 99% CO <sub>2</sub> Capture. Environmental Science & Technology, 2022, 56,<br>9829-9831.                                                                         | 4.6 | 2  |
| 5  | Policy-Driven Potential for Deploying Carbon Capture and Sequestration in a Fossil-Rich Power Sector. Environmental Science & amp; Technology, 2022, 56, 9872-9881.                      | 4.6 | 9  |
| 6  | Reducing carbon dioxide emissions beyond 2030: Time to shift U.S. power-sector focus. Energy Policy, 2021, 148, 111778.                                                                  | 4.2 | 6  |
| 7  | Effects of Climate Change on Capacity Expansion Decisions of an Electricity Generation Fleet in the Southeast U.S Environmental Science & amp; Technology, 2021, 55, 2522-2531.          | 4.6 | 30 |
| 8  | Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers. Applied Energy, 2021, 288, 116599.   | 5.1 | 16 |
| 9  | Climate-Induced Tradeoffs in Planning and Operating Costs of a Regional Electricity System.<br>Environmental Science & Technology, 2021, 55, 11204-11215.                                | 4.6 | 5  |
| 10 | Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration.<br>Applied Energy, 2021, 303, 117702.                                                 | 5.1 | 13 |
| 11 | A techno-economic assessment of carbon-sequestration tax incentives in the U.S. power sector.<br>International Journal of Greenhouse Gas Control, 2021, 111, 103450.                     | 2.3 | 14 |
| 12 | Fossil fuel–fired power plant operations under a changing climate. Climatic Change, 2020, 163, 619-632.                                                                                  | 1.7 | 6  |
| 13 | Future U.S. Energy Policy: Two Paths Diverge in a Wood—Does It Matter Which Is Taken?.<br>Environmental Science & Technology, 2020, 54, 12807-12809.                                     | 4.6 | 2  |
| 14 | On the Road to Paris: The Shifting Landscape of CO2 Reduction. Environmental Science &<br>Technology, 2019, 53, 12156-12157.                                                             | 4.6 | 1  |
| 15 | Advanced Membranes and Learning Scale Required for Cost-Effective Post-combustion Carbon<br>Capture. IScience, 2019, 13, 440-451.                                                        | 1.9 | 29 |
| 16 | Deep Reductions of Committed Emissions from Existing Power Infrastructure: Potential Paths in the<br>United States and China. Environmental Science & Technology, 2019, 53, 14097-14098. | 4.6 | 4  |
| 17 | Boundary Dam or Petra Nova – Which is a better model for CCS energy supply?. International Journal of Greenhouse Gas Control, 2019, 82, 59-68.                                           | 2.3 | 69 |
| 18 | Will We Always Have Paris? CO2 Reduction without the Clean Power Plan. Environmental Science<br>& Technology, 2018, 52, 2432-2433.                                                       | 4.6 | 2  |

Ηαίβο Ζηαι

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Systems Analysis of Physical Absorption of CO <sub>2</sub> in Ionic Liquids for Pre-Combustion<br>Carbon Capture. Environmental Science & Technology, 2018, 52, 4996-5004.                                                 | 4.6  | 42        |
| 20 | Managing China's coal power plants to address multiple environmental objectives. Nature<br>Sustainability, 2018, 1, 693-701.                                                                                               | 11.5 | 98        |
| 21 | Assessing carbon pollution standards: Electric power generation pathways and their water impacts.<br>Energy Policy, 2018, 120, 714-733.                                                                                    | 4.2  | 10        |
| 22 | The Economic Merits of Flexible Carbon Capture and Sequestration as a Compliance Strategy with the Clean Power Plan. Environmental Science & Technology, 2017, 51, 1102-1109.                                              | 4.6  | 21        |
| 23 | Trade-offs in cost and emission reductions between flexible and normal carbon capture and<br>sequestration under carbon dioxide emission constraints. International Journal of Greenhouse Gas<br>Control, 2017, 66, 25-34. | 2.3  | 16        |
| 24 | Technical and Economic Assessments of Ionic Liquids for Pre-Combustion CO2 Capture at IGCC Power<br>Plants. Energy Procedia, 2017, 114, 2166-2172.                                                                         | 1.8  | 10        |
| 25 | The cost of carbon capture and storage for coal-fired power plants in China. International Journal of<br>Greenhouse Gas Control, 2017, 65, 23-31.                                                                          | 2.3  | 60        |
| 26 | Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate,<br>Technology, and Policy Futures. Environmental Science & Technology, 2016, 50, 12095-12104.                                | 4.6  | 26        |
| 27 | Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under<br>an Emission Trading Scheme. Environmental Science & Technology, 2016, 50, 12567-12574.                               | 4.6  | 10        |
| 28 | Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants.<br>Environmental Research Letters, 2016, 11, 104004.                                                                   | 2.2  | 21        |
| 29 | A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power<br>Plants with and without Carbon Capture and Storage. Environmental Science & Technology, 2016,<br>50, 4127-4134.            | 4.6  | 20        |
| 30 | Life cycle water use of coal- and natural-gas-fired power plants with and without carbon capture and storage. International Journal of Greenhouse Gas Control, 2016, 44, 249-261.                                          | 2.3  | 66        |
| 31 | Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of Membrane Science, 2016, 511, 250-264.                                                                                  | 4.1  | 93        |
| 32 | Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO <sub>2</sub> Capture,<br>Utilization and Storage. Environmental Science & Technology, 2015, 49, 7571-7579.                                    | 4.6  | 62        |
| 33 | Water Impacts of a Low-Carbon Electric Power Future: Assessment Methodology and Status. Current<br>Sustainable/Renewable Energy Reports, 2015, 2, 1-9.                                                                     | 1.2  | 9         |
| 34 | Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 2015, 103, 286-300.                                                                                                                  | 4.6  | 288       |
| 35 | Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants. Energy<br>Procedia, 2014, 63, 1321-1328.                                                                                     | 1.8  | 28        |
| 36 | Water Impacts of CO <sub>2</sub> Emission Performance Standards for Fossil Fuel-fired Power<br>Plants. Environmental Science & Technology, 2014, 48, 11769-11776.                                                          | 4.6  | 22        |

Наіво Zhai

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Effects of Membrane-based CO2 Capture System on Pulverized Coal Power Plant Performance and Cost. Energy Procedia, 2013, 37, 1117-1124.                                                                                                 | 1.8 | 11        |
| 38 | Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at<br>Coal-Fired Power Plants. Environmental Science & Technology, 2013, 47, 3006-3014.                                                            | 4.6 | 103       |
| 39 | Comparative Performance and Cost Assessments of Coal- and Natural-Gas-Fired Power Plants under a CO <sub>2</sub> Emission Performance Standard Regulation. Energy & Fuels, 2013, 27, 4290-4301.                                             | 2.5 | 39        |
| 40 | The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants.<br>Environmental Science & Technology, 2012, 46, 3076-3084.                                                                                             | 4.6 | 135       |
| 41 | Water Use at Pulverized Coal Power Plants with Postcombustion Carbon Capture and Storage.<br>Environmental Science & Technology, 2011, 45, 2479-2485.                                                                                       | 4.6 | 123       |
| 42 | Development of a modal emissions model for a hybrid electric vehicle. Transportation Research, Part<br>D: Transport and Environment, 2011, 16, 444-450.                                                                                     | 3.2 | 37        |
| 43 | Carbon capture effects on water use at pulverized coal power plants. Energy Procedia, 2011, 4, 2238-2244.                                                                                                                                   | 1.8 | 14        |
| 44 | Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy, 2010, 38, 5653-5660.                                                                       | 4.2 | 128       |
| 45 | Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on<br>microscale measurements. Transportation Research, Part D: Transport and Environment, 2009, 14,<br>91-99.                                 | 3.2 | 87        |
| 46 | Regional On-Road Vehicle Running Emissions Modeling and Evaluation for Conventional and Alternative Vehicle Technologies. Environmental Science & Technology, 2009, 43, 8449-8455.                                                          | 4.6 | 20        |
| 47 | Comparison of Flexible Fuel Vehicle and Life-Cycle Fuel Consumption and Emissions of Selected<br>Pollutants and Greenhouse Gases for Ethanol 85 Versus Gasoline. Journal of the Air and Waste<br>Management Association, 2009, 59, 912-924. | 0.9 | 35        |
| 48 | A Vehicle-Specific Power Approach to Speed- and Facility-Specific Emissions Estimates for Diesel Transit<br>Buses. Environmental Science & Technology, 2008, 42, 7985-7991.                                                                 | 4.6 | 167       |
| 49 | Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data. Transportation<br>Research Record, 2008, 2058, 23-32.                                                                                                    | 1.0 | 46        |
| 50 | Impact of Alternative Vehicle Technologies on Measured Vehicle Emissions. , 2008, , .                                                                                                                                                       |     | 0         |
| 51 | Comparing real-world fuel consumption for diesel- and hydrogen-fueled transit buses and implication for emissions. Transportation Research, Part D: Transport and Environment, 2007, 12, 281-291.                                           | 3.2 | 139       |
| 52 | Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles on the Basis of Real-World Speed Profiles. Transportation Research Record, 2006, 1987, 128-137.                                                             | 1.0 | 49        |
| 53 | Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles on the Basis of<br>Real-World Speed Profiles. , 0, .                                                                                                        |     | 40        |