
Masaaki Sadakiyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/171803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Support effects of metal–organic frameworks in heterogeneous catalysis. Nanoscale, 2022, 14, 3398-3406.	2.8	33
2	Super Mg ²⁺ Conductivity around 10 ^{–3} S cm ^{–1} Observed in a Porous Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 8669-8675.	6.6	17
3	Development of energy-related functions of metal–organic frameworks and metal/MOF composites. Bulletin of Japan Society of Coordination Chemistry, 2022, 79, 88-99.	0.1	0
4	Support Effect of Metal–Organic Frameworks on Ethanol Production through Acetic Acid Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 19992-20001.	4.0	12
5	Vapor-Induced Superionic Conduction of Magnesium Ions in a Metal–Organic Framework. Journal of Physical Chemistry C, 2021, 125, 21124-21130.	1.5	8
6	Synthesis of a porous MOF, UiO-67-NSO2CF3, through post-synthetic method. Inorganic Chemistry Communication, 2021, 131, 108794.	1.8	1
7	Ion-conductive metal–organic frameworks. Dalton Transactions, 2021, 50, 5385-5397.	1.6	33
8	Flexibility Control of Twoâ€Ðimensional Coordination Polymers by Crystal Morphology: Water Adsorption and Thermal Expansion. Chemistry - A European Journal, 2021, 27, 18135-18140.	1.7	8
9	(Invited) Ion-Conductive Metal-Organic Frameworks. ECS Meeting Abstracts, 2020, MA2020-02, 2009-2009.	0.0	0
10	Alcoholic Compounds as an Efficient Energy Carrier. Nanostructure Science and Technology, 2019, , 387-417.	0.1	1
11	Consecutive oxidative additions of iodine on undulating 2D coordination polymers: formation of I–Pt–I chains and inhomogeneous layers. Dalton Transactions, 2019, 48, 7198-7202.	1.6	7
12	Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal–organic frameworks. Chemical Science, 2019, 10, 16-33.	3.7	224
13	Impact of Ir-Valence Control and Surface Nanostructure on Oxygen Evolution Reaction over a Highly Efficient Ir–TiO ₂ Nanorod Catalyst. ACS Catalysis, 2019, 9, 6974-6986.	5.5	90
14	Electrochemical hydrogenation of non-aromatic carboxylic acid derivatives as a sustainable synthesis process: from catalyst design to device construction. Physical Chemistry Chemical Physics, 2019, 21, 5882-5889.	1.3	27
15	Tailoring widely used ammonia synthesis catalysts for H and N poisoning resistance. Physical Chemistry Chemical Physics, 2019, 21, 5117-5122.	1.3	13
16	Catalytic enhancement on Ti–Zr complex oxide particles for electrochemical hydrogenation of oxalic acid to produce an alcoholic compound by controlling electronic states and oxide structures. Catalysis Science and Technology, 2019, 9, 6561-6565.	2.1	18
17	Design of Shapeâ€Palladium Nanoparticles Anchored on Titanium(IV) Metalâ€Organic Framework: Highly Active Catalysts for Reduction of p â€Nitrophenol in Water. ChemistrySelect, 2018, 3, 7934-7939.	0.7	9
18	Modulation of the catalytic activity of Pt nanoparticles through charge-transfer interactions with metal–organic frameworks. Chemical Communications, 2017, 53, 6720-6723.	2.2	50

MASAAKI SADAKIYO

#	Article	IF	CITATIONS
19	Introduction of an Amino Group on Zeolitic Imidazolate Framework through a Ligand-exchange Reaction. Chemistry Letters, 2017, 46, 1004-1006.	0.7	2
20	Alkoxo- and carboxylato-bridged hexanuclear copper(II) complex: Synthesis, structure and magnetic properties. Inorganic Chemistry Communication, 2017, 83, 49-51.	1.8	15
21	1D cerium(III) coordination polymer with pivalate bridges: Synthesis, structure and magnetic properties. Journal of Molecular Structure, 2017, 1141, 170-175.	1.8	9
22	Effects of the structure of the Rh3+ modifier on photocatalytic performances of an Rh3+/TiO2 photocatalyst under irradiation of visible light. Applied Catalysis B: Environmental, 2017, 205, 340-346.	10.8	8
23	Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns. Journal of the American Chemical Society, 2017, 139, 47-50.	6.6	632
24	Biochemical Evaluation of Copper Compounds Derived from O- and N-/O- Donor Ligands. Pharmaceutical Chemistry Journal, 2017, 51, 272-276.	0.3	2
25	High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. Journal of Materials Chemistry A, 2017, 5, 20298-20303.	5.2	101
26	An azide-bridged copper(II) 1D-chain with ferromagnetic interactions: synthesis, structure and magnetic studies. Transition Metal Chemistry, 2017, 42, 635-641.	0.7	7
27	Direct Power Charge and Discharge Using the Glycolic Acid/Oxalic Acid Redox Couple toward Carbon-Neutral Energy Circulation. ECS Transactions, 2017, 75, 17-21.	0.3	1
28	Electrochemical Production of Glycolic Acid from Oxalic Acid Using a Polymer Electrolyte Alcohol Electrosynthesis Cell Containing a Porous TiO2 Catalyst. Scientific Reports, 2017, 7, 17032.	1.6	34
29	A study on proton conduction in a layered metal–organic framework, Rb 2 (adp)[Zn 2 (ox) 3]·3H 2 O (adp = adipic acid, ox 2â^' = oxalate). Inorganic Chemistry Communication, 2016, 72, 138-140.	1.8	18
30	Proton-Conductive Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2016, 89, 1-10.	2.0	101
31	Hydrated Protonâ€Conductive Metal–Organic Frameworks. ChemPlusChem, 2016, 81, 691-701.	1.3	108
32	Superionic Conduction in Coâ€Vacant P2â€Na _{<i>x</i>} CoO ₂ Created by Hydrogen Reductive Elimination. Chemistry - an Asian Journal, 2016, 11, 1537-1541.	1.7	3
33	Hydrogenation of oxalic acid using light-assisted water electrolysis for the production of an alcoholic compound. Green Chemistry, 2016, 18, 3700-3706.	4.6	26
34	A new approach for the facile preparation of metal–organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52, 8385-8388.	2.2	24
35	A significant change in selective adsorption behaviour for ethanol by flexibility control through the type of central metals in a metal–organic framework. Chemical Science, 2016, 7, 1349-1356.	3.7	44
36	One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources, 2016, 301, 219-228.	4.0	399

MASAAKI SADAKIYO

#	Article	IF	CITATIONS
37	Poly[tris{î¼-2-[(dimethylamino)methyl]imidazolato-îº3 N 1,N 2:N 3}(nitrato-îºO)dizinc(II)]. IUCrData, 2016, 1, .	0.1	2
38	Poly[butane-1,4-diammonium [tri-μ-oxalato-dimanganese(II)] hexahydrate]. IUCrData, 2016, 1, .	0.1	1
39	Preparation of solid–solution type Fe–Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions, 2015, 44, 15764-15768.	1.6	16
40	Atomically mixed Fe-group nanoalloys: catalyst design for the selective electrooxidation of ethylene glycol to oxalic acid. Physical Chemistry Chemical Physics, 2015, 17, 11359-11366.	1.3	23
41	CO ₂ -free electric power circulation via direct charge and discharge using the glycolic acid/oxalic acid redox couple. Energy and Environmental Science, 2015, 8, 1456-1462.	15.6	40
42	Proton Conduction Study on Water Confined in Channel or Layer Networks of La ^{III} M ^{III} (ox) ₃ ·10H ₂ O (M = Cr, Co, Ru, La). Inorganic Chemistry, 2015, 54, 8529-8535.	1.9	44
43	Control of Crystalline Proton-Conducting Pathways by Water-Induced Transformations of Hydrogen-Bonding Networks in a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 7701-7707.	6.6	226
44	Design and Synthesis of Hydroxide Ion–Conductive Metal–Organic Frameworks Based on Salt Inclusion. Journal of the American Chemical Society, 2014, 136, 1702-1705.	6.6	124
45	Proton dynamics of two-dimensional oxalate-bridged coordination polymers. Physical Chemistry Chemical Physics, 2014, 16, 17295-17304.	1.3	36
46	Synthesis and catalytic application of PVP-coated Ru nanoparticles embedded in a porous metal–organic framework. Dalton Transactions, 2014, 43, 11295-11298.	1.6	21
47	Proton Conductivity Control by Ion Substitution in a Highly Proton-Conductive Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 13166-13169.	6.6	204
48	CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media. Scientific Reports, 2014, 4, 5620.	1.6	36
49	Proton-Conductive Magnetic Metal–Organic Frameworks, {NR ₃ (CH ₂ COOH)}[M _a ^{II} M _b ^{III} (ox)< Effect of Carboxyl Residue upon Proton Conduction. Journal of the American Chemical Society, 2013, 135, 2256-2262.	:sub>3 <td>ub>1: 205</td>	ub>1: 205
50	Promotion of Low-Humidity Proton Conduction by Controlling Hydrophilicity in Layered Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 5472-5475.	6.6	303
51	Hydroxyl Group Recognition by Hydrogen-Bonding Donor and Acceptor Sites Embedded in a Layered Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 11050-11053.	6.6	90
52	Rational Designs for Highly Proton-Conductive Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2009, 131, 9906-9907.	6.6	637
53	High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate. Journal of the American Chemical Society, 2009, 131, 3144-3145.	6.6	325
54	Oxalate-Bridged Bimetallic Complexes {NH(prol) ₃ }[MCr(ox) ₃] (M =) Tj ETQq0 0 0 rgBT	Overloci 6.6	240 x 10 Tf 50 72

Journal of the American Chemical Society, 2009, 131, 13516-13522.

#	Article	IF	CITATIONS
55	Development of Nanoalloy Catalysts for Realization of Carbon-Neutral Energy Cycles. Materials Science Forum, 0, 783-786, 2046-2050.	0.3	1