Sbastien Sauv

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1717348/sebastien-sauve-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

98 11,175 239 54 h-index g-index citations papers 6.63 6.5 12,799 254 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
239	Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS <i>Talanta</i> , 2022 , 241, 123267	6.2	1
238	Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater <i>Talanta</i> , 2022 , 241, 123216	6.2	1
237	Effects of plants and biochar on the performance of treatment wetlands for removal of the pesticide chlorantraniliprole from agricultural runoff. <i>Ecological Engineering</i> , 2022 , 175, 106477	3.9	2
236	Reduced bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in earthworms (Eisenia fetida) from soils amended with modified clays. <i>Journal of Hazardous Materials</i> , 2022 , 423, 126	9 5 3.8	0
235	Oxidation to Control Cyanobacteria and Cyanotoxins in Drinking Water Treatment Plants: Challenges at the Laboratory and Full-Scale Plants. <i>Water (Switzerland)</i> , 2022 , 14, 537	3	O
234	Occurrence and seasonal distribution of steroid hormones and bisphenol A in surface waters and suspended sediments of Quebec, Canada. <i>Environmental Advances</i> , 2022 , 8, 100199	3.5	0
233	Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins <i>Environmental Science & Environmental Science </i>	10.3	1
232	Effects of macrophyte species and biochar on the performance of treatment wetlands for the removal of glyphosate from agricultural runoff. <i>Science of the Total Environment</i> , 2022 , 838, 156061	10.2	1
231	Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from background and firefighting foam impacted ecosystems in Eastern Canada. <i>Science of the Total Environment</i> , 2021 , 151563	10.2	1
230	Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas. <i>Science of the Total Environment</i> , 2021 , 152060	10.2	0
229	Elucidating the removal of organic micropollutants on biological ion exchange resins. <i>Science of the Total Environment</i> , 2021 , 808, 152137	10.2	2
228	Phytotoxic effects of microcystins, antitoxin-a and cylindrospermopsin to aquatic plants: A meta-analysis. <i>Science of the Total Environment</i> , 2021 , 810, 152104	10.2	1
227	Methods for the analysis of endocrine disrupting chemicals in selected environmental matrixes <i>Environmental Research</i> , 2021 , 112616	7.9	2
226	Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. <i>Environmental Science & Environmental Science</i>	10.3	4
225	Stability of Nitrogen-Containing Polyfluoroalkyl Substances in Aerobic Soils. <i>Environmental Science</i> & amp; Technology, 2021 , 55, 4698-4708	10.3	14
224	Occurrence of microcystins, anabaenopeptins and other cyanotoxins in fish from a freshwater wildlife reserve impacted by harmful cyanobacterial blooms. <i>Toxicon</i> , 2021 , 194, 44-52	2.8	3
223	Dynamics of bacterial community at varying sludge retention time within membrane bioreactor treating synthetic hospital wastewater. <i>Systems Microbiology and Biomanufacturing</i> , 2021 , 1, 471-482		O

222	Operating Bicarbonate-Form versus Chloride-Form Ion Exchange Resins without Regeneration for Natural Organic Matter Removal. <i>ACS ES&T Water</i> , 2021 , 1, 1456-1463		4
221	Financing on-farm ecosystem services in southern Quebec, Canada: A public call for pesticides reduction. <i>Ecological Economics</i> , 2021 , 184, 106997	5.6	O
220	Longitudinal and vertical variations of waterborne emerging contaminants in the St. Lawrence Estuary and Gulf during winter conditions. <i>Science of the Total Environment</i> , 2021 , 777, 146073	10.2	7
219	Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. <i>Bioresource Technology</i> , 2021 , 319, 124223	11	9
218	Evaluation of ELISA-based method for total anabaenopeptins determination and comparative analysis with on-line SPE-UHPLC-HRMS in freshwater cyanobacterial blooms. <i>Talanta</i> , 2021 , 223, 121802	<u>2</u> 6.2	0
217	Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term storage of surface water and drinking water samples. <i>Harmful Algae</i> , 2021 , 101, 101955	5.3	3
216	Compositional Microbial-Community Shift of Submerged Membrane Bioreactor Treating Hospital Wastewater at Varying Temperatures. <i>Journal of Environmental Engineering, ASCE</i> , 2021 , 147, 04020152	2	2
215	Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. <i>Environmental Pollution</i> , 2021 , 272, 115966	9.3	8
214	Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant?. <i>Toxins</i> , 2021 , 13,	4.9	2
213	Quantitative screening for cyanotoxins in soil and groundwater of agricultural watersheds in Quebec, Canada. <i>Chemosphere</i> , 2021 , 274, 129781	8.4	2
212	Circular economy of water: Tackling quantity, quality and footprint of water. <i>Environmental Development</i> , 2021 , 39, 100651	4.1	6
211	Modified clays reduce leaching of per- and polyfluoroalkyl substances from AFFF-contaminated soils. <i>AWWA Water Science</i> , 2021 , 3, e1241	1.6	3
210	Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management. <i>Water Research</i> , 2021 , 205, 117728	12.5	5
209	A quantitative UHPLC-MS/MS method for the growth hormone-releasing peptide-6 determination in complex biological matrices and transdermal formulations. <i>Talanta</i> , 2021 , 233, 122555	6.2	1
208	Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. <i>Chemical Engineering Journal Advances</i> , 2021 , 8, 100151	3.6	1
207	Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study <i>Environmental Science & Environmental S</i>	10.3	6
206	Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. <i>Environmental Science & Discounty Contribution</i> 2020, 14254-14264	10.3	31
205	Removal of microcystin-LR and other water pollutants using sand coated with bio-optimized carbon submicron particles: Graphene oxide and reduced graphene oxide. <i>Chemical Engineering Journal</i> , 2020 , 397, 125398	14.7	10

204	Improved extraction of multiclass cyanotoxins from soil and sensitive quantification with on-line purification liquid chromatography tandem mass spectrometry. <i>Talanta</i> , 2020 , 216, 120923	6.2	6
203	Role of Leaf Litter on the Incorporation of Copper-Containing Pesticides into Soils Under Fruit Production: a Review. <i>Journal of Soil Science and Plant Nutrition</i> , 2020 , 20, 990-1000	3.2	10
202	Bioaccumulation of Zwitterionic Polyfluoroalkyl Substances in Earthworms Exposed to Aqueous Film-Forming Foam Impacted Soils. <i>Environmental Science & Earthworms</i> , 2020 , 54, 1687-1697	10.3	16
201	Extreme rainfall drives early onset cyanobacterial bloom. <i>Facets</i> , 2020 , 5, 899-920	2.3	3
200	Which soil Cu pool governs phytotoxicity in field-collected soils contaminated by copper smelting activities in central Chile?. <i>Chemosphere</i> , 2020 , 242, 125176	8.4	14
199	Physical and biological removal of Microcystin-LR and other water contaminants in a biofilter using Manganese Dioxide coated sand and Graphene sand composites. <i>Science of the Total Environment</i> , 2020 , 703, 135052	10.2	11
198	Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada. <i>Journal of Food Composition and Analysis</i> , 2020 , 94, 103630	4.1	14
197	A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. <i>Talanta</i> , 2020 , 220, 121407	6.2	7
196	Molecular mechanisms of per- and polyfluoroalkyl substances on a modified clay: a combined experimental and molecular simulation study. <i>Water Research</i> , 2020 , 184, 116166	12.5	25
195	Fast Generation of Perfluoroalkyl Acids from Polyfluoroalkyl Amine Oxides in Aerobic Soils. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 714-720	11	11
194	Co-culturing of native bacteria from drinking water treatment plant with known degraders to accelerate microcystin-LR removal using biofilter. <i>Chemical Engineering Journal</i> , 2020 , 383, 123090	14.7	8
193	Biological ion exchange as an alternative to biological activated carbon for drinking water treatment. <i>Water Research</i> , 2020 , 168, 115148	12.5	18
192	Electrochemical treatment of real hospital wastewaters and monitoring of pharmaceutical residues by using surrogate models. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103332	6.8	17
191	Analysis of the neurotoxin EN-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. <i>PLoS ONE</i> , 2019 , 14, e0220698	3.7	4
190	Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1591, 87-98	4.5	41
189	A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. <i>Environment International</i> , 2019 , 130, 104889	12.9	39
188	Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review. <i>Trends in Environmental Analytical Chemistry</i> , 2019 , 23, e00066	12	63
187	The bacterial community structure of submerged membrane bioreactor treating synthetic hospital wastewater. <i>Bioresource Technology</i> , 2019 , 286, 121362	11	20

186	Data supporting the optimization of liquid chromatography tandem mass spectrometry conditions to analyze EPA-priority hormones and bisphenol A in water samples. <i>Data in Brief</i> , 2019 , 24, 103958	1.2	3	
185	Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. <i>Food Control</i> , 2019 , 104, 74-8	32 ^{6.2}	33	
184	Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. <i>Journal of Trace Elements in Medicine and Biology</i> , 2019 , 54, 156-162	4.1	20	
183	Agro-industrial residues as a unique support in a sand filter to enhance the bioactivity to remove microcystin-Leucine aRginine and organics. <i>Science of the Total Environment</i> , 2019 , 670, 971-981	10.2	12	
182	Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. <i>Science of the Total Environment</i> , 2019 , 671, 578-585	10.2	25	
181	Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. <i>Environmental Pollution</i> , 2019 , 250, 29-39	9.3	77	
180	Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. <i>Science of the Total Environment</i> , 2019 , 647, 690-698	10.2	66	
179	Effect of temperature on oxidation kinetics of testosterone and progestogens by ozone. <i>Journal of Water Process Engineering</i> , 2019 , 31, 100879	6.7	4	
178	Precipitation effects on parasite, indicator bacteria, and wastewater micropollutant loads from a water resource recovery facility influent and effluent. <i>Journal of Water and Health</i> , 2019 , 17, 701-716	2.2	1	
177	A Data-Independent Methodology for the Structural Characterization of Microcystins and Anabaenopeptins Leading to the Identification of Four New Congeners. <i>Toxins</i> , 2019 , 11,	4.9	12	
176	Blood pressure and burden of hypertension in Cameroon, a microcosm of Africa: a systematic review and meta-analysis of population-based studies. <i>Journal of Hypertension</i> , 2019 , 37, 2190-2199	1.9	14	
175	Analysis of multiclass cyanotoxins (microcystins, anabaenopeptins, cylindrospermopsin and anatoxins) in lake waters using on-line SPE liquid chromatography high-resolution Orbitrap mass spectrometry. <i>Analytical Methods</i> , 2019 , 11, 5289-5300	3.2	32	
174	Transformation of novel polyfluoroalkyl substances (PFASs) as co-contaminants during biopile remediation of petroleum hydrocarbons. <i>Journal of Hazardous Materials</i> , 2019 , 362, 140-147	12.8	33	
173	Adsorption of micropollutants present in surface waters onto polymeric resins: Impact of resin type and water matrix on performance. <i>Science of the Total Environment</i> , 2019 , 660, 1449-1458	10.2	34	
172	Fecal contamination of storm sewers: Evaluating wastewater micropollutants, human-specific Bacteroides 16S rRNA, and mitochondrial DNA genetic markers as alternative indicators of sewer cross connections. <i>Science of the Total Environment</i> , 2019 , 659, 548-560	10.2	14	
171	Temporal variability of parasites, bacterial indicators, and wastewater micropollutants in a water resource recovery facility under various weather conditions. <i>Water Research</i> , 2019 , 148, 446-458	12.5	21	
170	Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater. <i>Talanta</i> , 2019 , 195, 533-542	6.2	55	
169	Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 2765-2779	4.4	37	

168	Quantification of peptides in human synovial fluid using liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2018 , 186, 124-132	6.2	1
167	Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases. <i>Science of the Total Environment</i> , 2018 , 635, 144-155	10.2	29
166	Comparison of exposure to trace elements through vegetable consumption between a mining area and an agricultural area in central Chile. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 19114-7	1 9 1/21	7
165	Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water. <i>NeuroToxicology</i> , 2018 , 64, 118-125	4.4	31
164	Removal of micropollutants by fresh and colonized magnetic powdered activated carbon. <i>Journal of Hazardous Materials</i> , 2018 , 360, 349-355	12.8	30
163	Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. <i>Science of the Total Environment</i> , 2018 , 616-617, 1089-1100	10.2	129
162	Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. <i>Chemosphere</i> , 2018 , 193, 160-169	8.4	48
161	Chemical Speciation of Trace Elements in Soil Solution. <i>Soil Science Society of America Book Series</i> , 2018 , 655-688		2
160	Adequate Reducing Conditions Enable Conjugation of Oxidized Peptides to Polymers by One-Pot Thiol Click Chemistry. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3866-3876	6.3	3
159	Optimization of extraction methods for comprehensive profiling of perfluoroalkyl and polyfluoroalkyl substances in firefighting foam impacted soils. <i>Analytica Chimica Acta</i> , 2018 , 1034, 74-8-	4 ^{6.6}	45
158	Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances. <i>Analytical Chemistry</i> , 2017 , 89, 253	9-2546	533
157	Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mgantic Railway Accident. <i>Environmental Science & Deployment Railway Accident</i> . Environmental Science & Deployment Railway Accident. Environmental Science & Deployment Railway Rocal Railway Accident. Environmental Science & Deployment Railway Rocal Railway Railway Rocal Railway Railway Rocal Railway Rocal Railway Railw	10.3	73
156	Effect of accelerating voltage on beam damage of asbestos fibers in the transmission electron microscope (TEM). <i>Micron</i> , 2017 , 96, 1-8	2.3	1
155	Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. <i>Environmental Pollution</i> , 2017 , 223, 146-152	9.3	15
154	Isomers of perfluorooctanesulfonate (PFOS) in cord serum and birth outcomes in China: Guangzhou Birth Cohort Study. <i>Environment International</i> , 2017 , 102, 1-8	12.9	46
153	Effect of temperature on beam damage of asbestos fibers in the transmission electron microscope (TEM) at 100kV. <i>Micron</i> , 2017 , 94, 26-36	2.3	2
152	Fluoxetine and its active metabolite norfluoxetine disrupt estrogen synthesis in a co-culture model of the feto-placental unit. <i>Molecular and Cellular Endocrinology</i> , 2017 , 442, 32-39	4.4	21
151	Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. <i>Journal of Soil Science and Plant Nutrition</i> , 2017 , 0-0	3.2	2

150	Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the Lac-Mgantic Railway Accident. <i>Environmental Science & Environmental Science & En</i>	10.3	75
149	Analysis of individual and total microcystins in surface water by on-line preconcentration and desalting coupled to liquid chromatography tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2017 , 1516, 9-20	4.5	22
148	Analysis of emerging contaminants in water and solid samples using high resolution mass spectrometry with a Q Exactive orbital ion trap and estrogenic activity with YES-assay. <i>Chemosphere</i> , 2017 , 166, 400-411	8.4	42
147	Detection of Cyanotoxins in Algae Dietary Supplements. <i>Toxins</i> , 2017 , 9,	4.9	68
146	Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. <i>Environmental Development</i> , 2016 , 17, 48-56	4.1	440
145	Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants. <i>Environmental Science & Environmental & Environ</i>	10.3	89
144	Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. <i>Chemistry Central Journal</i> , 2016 , 10, 30		42
143	Analysis of zwitterionic, cationic, and anionic poly- and perfluoroalkyl surfactants in sediments by liquid chromatography polarity-switching electrospray ionization coupled to high resolution mass spectrometry. <i>Talanta</i> , 2016 , 152, 447-56	6.2	64
142	The effects of combined sewer overflow events on riverine sources of drinking water. <i>Water Research</i> , 2016 , 92, 218-27	12.5	36
141	Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. <i>Science of the Total Environment</i> , 2016 , 543, 524-535	10.2	50
140	Micropollutant Removal Potential by Aged Powdered Activated Carbon. <i>Journal of Environmental Engineering, ASCE</i> , 2016 , 142, 04016058	2	2
139	Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard. <i>International Journal of Phytoremediation</i> , 2016 , 18, 1128-35	3.9	8
138	MRI pallidal signal in children exposed to manganese in drinking water. <i>NeuroToxicology</i> , 2016 , 53, 124-	1.33.34	21
137	Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1417-1426	4.3	18
136	Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: optimization for a laser diode thermal desorption method. <i>Analytica Chimica Acta</i> , 2015 , 881, 98-106	6.6	31
135	Total Analysis of Microcystins in Fish Tissue Using Laser Thermal Desorption-Atmospheric Pressure Chemical Ionization-High-Resolution Mass Spectrometry (LDTD-APCI-HRMS). <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 7440-9	5.7	16
134	Solubility, partitioning, and activity of copper-contaminated soils in a semiarid region. <i>Journal of Plant Nutrition and Soil Science</i> , 2015 , 178, 452-459	2.3	16
133	Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 5487-501	4.4	29

132	Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 448-54	7	21
131	Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 120, 409-17	7	18
130	Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment. <i>Toxicon</i> , 2015 , 103, 48-54	2.8	22
129	On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry for the analysis of cyanotoxins in algal blooms. <i>Toxicon</i> , 2015 , 108, 167-75	2.8	40
128	Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. <i>Analytica Chimica Acta</i> , 2015 , 853, 415-424	6.6	57
127	High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer. <i>Talanta</i> , 2015 , 132, 836-44	6.2	19
126	Ozone Oxidation of Antidepressants in Wastewater: Treatment Evaluation and Characterization of New By-Products by LC-QToFMS 2015 , 203-226		
125	Development of a suspect and non-target screening approach to detect veterinary antibiotic residues in a complex biological matrix using liquid chromatography/high-resolution mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 2361-73	2.2	22
124	Analysis of nine N-nitrosamines using liquid chromatography-accurate mass high resolution-mass spectrometry on a Q-Exactive instrument. <i>Analytical Methods</i> , 2015 , 7, 5748-5759	3.2	22
123	Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows. <i>Journal of Hydrology</i> , 2015 , 531, 830-839	6	24
122	The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 2051-65	4.3	6
121	Temporal analysis of E. coli, TSS and wastewater micropollutant loads from combined sewer overflows: implications for management. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 965-7	14 ·3	23
120	Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 171-7	7	32
119	A new protocol for the analysis of pharmaceuticals, pesticides, and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters. <i>Archives of Environmental Contamination and Toxicology</i> , 2014 , 66, 582-93	3.2	35
118	Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils. <i>Soil Biology and Biochemistry</i> , 2014 , 71, 87-94	7.5	23
117	Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. <i>Science of the Total Environment</i> , 2014 , 487, 792-800	10.2	36
116	Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. <i>Analytica Chimica Acta</i> , 2014 , 820, 76-83	6.6	28
115	Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments. <i>Water Research</i> , 2014 , 58, 50-61	12.5	22

114	Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 115-25	3.8	91
113	Time to revisit arsenic regulations: comparing drinking water and rice. BMC Public Health, 2014, 14, 465	4.1	24
112	A review of what is an emerging contaminant. <i>Chemistry Central Journal</i> , 2014 , 8, 15		327
111	Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. <i>Talanta</i> , 2014 , 128, 23-30	6.2	17
110	Neurobehavioral function in school-age children exposed to manganese in drinking water. <i>Environmental Health Perspectives</i> , 2014 , 122, 1343-50	8.4	134
109	Enzymatic functional stability of Zn-contaminated field-collected soils: an ecotoxicological perspective. <i>Science of the Total Environment</i> , 2014 , 484, 1-9	10.2	7
108	Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents. <i>Chemistry Central Journal</i> , 2013 , 7, 84		16
107	Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. <i>Chemistry Central Journal</i> , 2013 , 7, 75		71
106	Ozone oxidation of antidepressants in wastewater -Treatment evaluation and characterization of new by-products by LC-QToFMS. <i>Chemistry Central Journal</i> , 2013 , 7, 15		36
105	On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry optimized for the analysis of steroid hormones in urban wastewaters. <i>Talanta</i> , 2013 , 115, 349-60	6.2	54
104	Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination. <i>Water Research</i> , 2013 , 47, 4370-82	12.5	90
103	Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. <i>Water Research</i> , 2013 , 47, 2689-700	12.5	73
102	Metal toxicity assessment in soils using enzymatic activity: Can water be used as a surrogate buffer?. <i>Soil Biology and Biochemistry</i> , 2013 , 57, 256-263	7.5	21
101	Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: validation and resolution from phenylalanine. <i>Toxicon</i> , 2013 , 61, 165-74	2.8	19
100	High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 5731-6	7.8	18
99	Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge. <i>Water Research</i> , 2012 , 46, 1511-23	12.5	147
98	Toxic effects of PCDD/Fs mixtures on Eisenia andrei earthworms. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 80, 54-9	7	11
97	Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the PuchuncavIValley, Chile. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 80, 386-92	7	24

96	Experimental determination of the oral bioavailability and bioaccessibility of lead particles. <i>Chemistry Central Journal</i> , 2012 , 6, 138		54
95	Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples. <i>Analytica Chimica Acta</i> , 2012 , 754, 75-82	6.6	30
94	Using a novel sol-gel stir bar sorptive extraction method for the analysis of steroid hormones in water by laser diode thermal desorption/atmospheric chemical ionization tandem mass spectrometry. <i>Talanta</i> , 2012 , 101, 337-45	6.2	40
93	Mass Spectrometry for Trace Analysis of Explosives in Water. <i>Critical Reviews in Analytical Chemistry</i> , 2012 , 42, 257-271	5.2	31
92	Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area. <i>Chemosphere</i> , 2012 , 86, 118-23	8.4	93
91	Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. <i>Chemosphere</i> , 2012 , 88, 131-9	8.4	109
90	Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatmentevidence of biological effects. <i>Chemosphere</i> , 2011 , 83, 564-71	8.4	103
89	Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. <i>Chemosphere</i> , 2011 , 84, 1085-94	8.4	49
88	Comparison of APPI, APCI and ESI for the LC-MS/MS analysis of bezafibrate, cyclophosphamide, enalapril, methotrexate and orlistat in municipal wastewater. <i>Journal of Mass Spectrometry</i> , 2011 , 46, 383-90	2.2	50
87	High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 583-90		48
86	Predicting Al, Cu, and Zn concentrations in the fine roots of trembling aspen (Populus tremuloides) using bulk and rhizosphere soil properties. <i>Canadian Journal of Forest Research</i> , 2011 , 41, 1267-1279	1.9	1
85	Performance of point-of-use devices to remove manganese from drinking water. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 601-7	2.3	15
84	Intellectual impairment in school-age children exposed to manganese from drinking water. <i>Environmental Health Perspectives</i> , 2011 , 119, 138-43	8.4	406
83	Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS. <i>Environmental Science & Environmental & Environmental</i>	10.3	35
82	Laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry analysis of selected steroid hormones in wastewater: method optimization and application. <i>Analytical Chemistry</i> , 2010 , 82, 639-45	7.8	56
81	High-throughput quantitation of seven sulfonamide residues in dairy milk using laser diode thermal desorption-negative mode atmospheric pressure chemical ionization tandem mass spectrometry. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 1442-6	5.7	45
80	Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water. <i>Chemosphere</i> , 2010 , 79, 1056-63	8.4	55
79	BTEX Exposures among Automobile Mechanics and Painters and Their Associated Health Risks. <i>Human and Ecological Risk Assessment (HERA)</i> , 2010 , 16, 301-316	4.9	29

78	The speciation of water-soluble Al and Zn in the rhizosphere of forest soils. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 1274-86		3
77	Lead removal from tap water using POU devices. <i>Journal - American Water Works Association</i> , 2010 , 102, 91-105	0.5	24
76	Time-dependent integrity during storage of natural surface water samples for the trace analysis of pharmaceutical products, feminizing hormones and pesticides. <i>Chemistry Central Journal</i> , 2010 , 4, 10		27
75	Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. <i>Environmental Health Perspectives</i> , 2009 , 117, 675-84	8.4	202
74	Organic Matter Reduces Copper Toxicity for the Earthworm Eisenia fetida in Soils from Mining Areas in Central Chile. <i>Chilean Journal of Agricultural Research</i> , 2009 , 69,	1.9	7
73	Use of proliferation tests to evaluate the effects of complexing agents on beryllium toxicity. Journal of Applied Toxicology, 2009 , 29, 27-35	4.1	6
72	Assessment of hair and bone accumulation of beryllium by mice exposed to contaminated dusts. Journal of Applied Toxicology, 2009 , 29, 638-42	4.1	8
71	Prediction of cadmium and zinc concentration in wheat grain from soils affected by the application of phosphate fertilizers varying in Cd concentration. <i>Nutrient Cycling in Agroecosystems</i> , 2009 , 83, 125-1	<i>3</i> 33 ³	40
70	Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. <i>International Journal of Greenhouse Gas Control</i> , 2009 , 3, 20-28	4.2	37
69	Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 829-36	3.5	33
68	Effects of cadmium telluride quantum dots on cadmium bioaccumulation and metallothionein production to the freshwater mussel, Elliptio complanata. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2009 , 150, 246-51	3.2	28
67	On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. <i>Journal of Chromatography A</i> , 2009 , 1216, 851	4·5 18-27	89
66	Performance of Salix viminalis and Populus nigra [Populus maximowiczii in short rotation intensive culture under high irrigation. <i>Biomass and Bioenergy</i> , 2009 , 33, 1271-1277	5.3	14
65	Application of Turbulent Flow Chromatography Load Columns for the On-Line Analysis of Anti-Infectives in Wastewaters. <i>Chromatographia</i> , 2009 , 70, 239-245	2.1	16
64	Direct analysis of volatile methylsiloxanes in gaseous matrixes using atmospheric pressure chemical ionization-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 7288-93	7.8	46
63	Copper mobility in contaminated soils of the Puchuncav Valley, central Chile. <i>Geoderma</i> , 2009 , 150, 359-	366	37
62	Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. <i>Water Research</i> , 2009 , 43, 4707-17	12.5	244
61	Predicting Cd partitioning in spiked soils and bioaccumulation in the earthworm Eisenia fetida. Applied Soil Ecology, 2009 , 42, 118-123	5	20

60	Using diffusive gradients in thin-films for in situ monitoring of dissolved phosphate emissions from freshwater aquaculture. <i>Aquaculture</i> , 2009 , 286, 198-202	4.4	28
59	Determination of bezafibrate, methotrexate, cyclophosphamide, orlistat and enalapril in waste and surface waters using on-line solid-phase extraction liquid chromatography coupled to polarity-switching electrospray tandem mass spectrometry. <i>Journal of Environmental Monitoring</i> ,		44
58	Determination of carbamazepine in aquatic organisms by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 723-5		10
57	Influence of microorganisms on Cu speciation in the rhizosphere of forest soils. <i>Soil Biology and Biochemistry</i> , 2008 , 40, 2441-2451	7.5	18
56	Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. <i>Aquatic Toxicology</i> , 2008 , 86, 333-40	5.1	210
55	Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS. <i>Talanta</i> , 2008 , 76, 1088-96	6.2	133
54	Speciation of zinc in contaminated soils. <i>Environmental Pollution</i> , 2008 , 155, 208-16	9.3	45
53	Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 70, 1-9	7	47
52	Effect of copper on soil functional stability measured by relative soil stability index (RSSI) based on two enzyme activities. <i>Chemosphere</i> , 2008 , 72, 755-62	8.4	32
51	On-line solid phase extraction and liquid chromatography/tandem mass spectrometry to quantify pharmaceuticals, pesticides and some metabolites in wastewaters, drinking, and surface waters. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 482-9		60
50	Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 5325-33	7.8	195
49	CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7610-7616	3.9	138
48	CO2 Sequestration by Aqueous Red Mud Carbonation at Ambient Pressure and Temperature. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7617-7622	3.9	51
47	Trace Metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn) in Food Supplements of Marine Origin. <i>Human and Ecological Risk Assessment (HERA)</i> , 2008 , 14, 408-420	4.9	9
46	Study on the effects of nitrilotriproprionic acid and 4,5-dihydroxy-1,3-benzene disulphonate on the fractionation of beryllium in human serum using graphite furnace atomic absorption spectrometry. <i>Chemistry Central Journal</i> , 2008 , 2, 10		
45	Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum. <i>Chemistry Central Journal</i> , 2008 , 2, 14		7
44	Evaluation of affinity constants of Cu, Cd, Ca and H for active soil surfaces for a solid phase-controlled soil ligand model. <i>Environmental Chemistry</i> , 2008 , 5, 150	3.2	13
43	Determination of six anti-infectives in wastewater using tandem solid-phase extraction and liquid chromatography-tandem mass spectrometry. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 307-13		31

(2003-2007)

4	42	Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils. <i>Environmental Science & Environmental Scienc</i>	10.3	21
4	41	Critical loads of metals and other trace elements to terrestrial environments. <i>Environmental Science</i> & amp; Technology, 2007, 41, 6326-31	10.3	34
4	40	Real-time continuous monitoring methods for airborne VOCs. <i>TrAC - Trends in Analytical Chemistry</i> , 2007 , 26, 931-940	14.6	33
	39	A fully automated on-line preconcentration and liquid chromatography-tandem mass spectrometry method for the analysis of anti-infectives in wastewaters. <i>Analytica Chimica Acta</i> , 2007 , 604, 147-57	6.6	36
3	38	Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. <i>Soil Biology and Biochemistry</i> , 2007 , 39, 2329-2338	7.5	125
ĵ	37	Soil Organic Matter Impacts upon Fluxes of Cadmium in Soils Measured using Diffusive Gradients in Thin Films. <i>Communications in Soil Science and Plant Analysis</i> , 2007 , 38, 1619-1636	1.5	7
3	36	Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. <i>Environmental Chemistry</i> , 2007 , 4, 90	3.2	69
Ĵ	35	Preventing biofilm development on DGT devices using metals and antibiotics. <i>Talanta</i> , 2007 , 72, 716-22	6.2	36
Ĵ	34	Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. <i>Science of the Total Environment</i> , 2007 , 378, 293-305	10.2	150
Ĵ	33	Distribution of 28 elements in podzol profiles studied by fractional extractions and multivariate statistics. <i>Diqiu Huaxue</i> , 2006 , 25, 207-207		
Ĵ	32	Mechanisms and Pathways of Trace Element Mobility in Soils. <i>Advances in Agronomy</i> , 2006 , 111-178	7.7	117
ĵ	31	Copper inhibition of soil organic matter decomposition in a seventy-year field exposure. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 854-7	3.8	31
Ĵ	30	Effects of pH on Fluxes of Cadmium in Soils Measured by using Diffusive Gradients in Thin Films. <i>Communications in Soil Science and Plant Analysis</i> , 2005 , 35, 2655-2673	1.5	3
1	29	Age-specific immunocompetence of the earthworm Eisenia andrei: exposure to methylmercury chloride. <i>Ecotoxicology and Environmental Safety</i> , 2005 , 60, 67-72	7	26
1	28	Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model. <i>Environmental Modelling and Software</i> , 2005 , 20, 353-359	5.2	37
1	27	Equilibrium Speciation of Cadmium, Copper, and Lead in Soil Solutions. <i>Communications in Soil Science and Plant Analysis</i> , 2005 , 36, 1537-1556	1.5	19
ź	26	Total mercury determination in sand boxes from Montreal. <i>Journal of Environmental Monitoring</i> , 2004 , 6, 903-6		3
:	25	Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. <i>Environmental Science & Environmental Science & Envir</i>	10.3	138

24	Immune response of earthworms (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) following in situ soil exposure to atmospheric deposition from a cement factory. <i>Journal of Environmental Monitoring</i> , 2003 , 5, 774-9		7
23	Low metal bioavailability in a contaminated urban site. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 954-961	3.8	23
22	Evaluation of a Questionnaire-Based Method for the Estimation of Methylmercury Exposure of Recreational Anglers in the James Bay Territory (QuBec, Canada). <i>Human and Ecological Risk Assessment (HERA)</i> , 2002 , 8, 559-571	4.9	3
21	Phagocytic response of terrestrial and aquatic invertebrates following in vitro exposure to trace elements. <i>Ecotoxicology and Environmental Safety</i> , 2002 , 52, 21-9	7	51
20	Uptake of trace metals by the earthworm Lumbricus terrestris L. in urban contaminated soils. <i>Applied Soil Ecology</i> , 2002 , 19, 191-198	5	85
19	Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). <i>Aquatic Toxicology</i> , 2002 , 58, 189-200	5.1	128
18	Low metal bioavailability in a contaminated urban site 2002 , 21, 954		2
17	Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	849
16	Adsorption of Free Lead (Pb2+) by Pedogenic Oxides, Ferrihydrite, and Leaf Compost. <i>Soil Science Society of America Journal</i> , 2000 , 64, 595-599	2.5	105
15	Speciation and Complexation of Cadmium in Extracted Soil Solutions. <i>Environmental Science & Environmental Science & Technology</i> , 2000 , 34, 291-296	10.3	248
14	Copper speciation and microbial activity in long-term contaminated soils. <i>Archives of Environmental Contamination and Toxicology</i> , 1999 , 36, 124-31	3.2	80
13	Nitrification potential in field-collected soils contaminated with Pb or Cu. <i>Applied Soil Ecology</i> , 1999 , 12, 29-39	5	44
12	Thermally Induced Release of Adsorbed Pb upon Aging Ferrihydrite and Soil Oxides. <i>Environmental Science & Environmental Scien</i>	10.3	31
11	Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 1481-1489	3.8	163
10	Lead Phosphate Solubility in Water and Soil Suspensions. <i>Environmental Science & Environmental Scienc</i>	10.3	77
9	Soil Solution Speciation of Lead(II): Effects of Organic Matter and pH. <i>Soil Science Society of America Journal</i> , 1998 , 62, 618-621	2.5	178
8	. Environmental Toxicology and Chemistry, 1998 , 17, 1481	3.8	29
7	Speciation of Lead in Contaminated Soils. <i>Environmental Pollution</i> , 1997 , 98, 149-155	9.3	128

LIST OF PUBLICATIONS

6	Copper Solubility and Speciation of In Situ Contaminated Soils: Effects of Copper Level, pH and Organic Matter. <i>Water, Air, and Soil Pollution</i> , 1997 , 100, 133-149	2.6	220
5	MOBILITY AND SOLUBILITY OF TOXIC METALS AND NUTRIENTS IN SOIL FIFTEEN YEARS AFTER SLUDGE APPLICATION. <i>Soil Science</i> , 1997 , 162, 487-500	0.9	257
4	Linking plant tissue concentrations and soil copper pools in urban contaminated soils. <i>Environmental Pollution</i> , 1996 , 94, 153-7	9.3	128
3	Ion-selective electrode measurements of copper(II) activity in contaminated soils. <i>Archives of Environmental Contamination and Toxicology</i> , 1995 , 29, 373-379	3.2	66
2	Cation selectivity coefficient variations in acidic forest soils from Sutton, QuBec. <i>Geoderma</i> , 1995 , 68, 301-308	6.7	5
1	Effects of pH on Fluxes of Cadmium in Soils Measured by using Diffusive Gradients in Thin Films		5