
Olatz Larrañaga Agirre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1717289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature of Alkali―and Coinageâ€Metal Bonds versus Hydrogen Bonds. Chemistry - an Asian Journal, 2021, 16, 315-321.	3.3	3
2	Effect of Remote Substituents on the Torquoselectivity of 3â€Silyl Cyclobuteneâ€Derivatives Ringâ€Opening Reactions. ChemPhysChem, 2020, 21, 1805-1813.	2.1	0
3	Nitroprolinates as Nucleophiles in Michaelâ€type Additions and Acylations. Synthesis of Enantiomerically Enriched Fused Aminoâ€pyrrolidinoâ€[1,2―a]pyrazinones and â€diketopiperazines. ChemCatChem, 2020, 12, 2014-2021.	3.7	5
4	Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. Journal of Organic Chemistry, 2019, 84, 10593-10605.	3.2	29
5	Dismantling the Hyperconjugation of Ï€â€Conjugated Phosphorus Heterocycles. Chemistry - A European Journal, 2019, 25, 9035-9044.	3.3	22
6	From Bioactive Pyrrolidino[3,4-c]pyrrolidines to more Bioactive Pyrrolidino[3,4-b]pyrrolidines via Ring-Opening/Ring-Closing Promoted by Sodium Methoxide. Synthesis, 2019, 51, 1565-1577.	2.3	8
7	Effect of an αâ€Methyl Substituent on the Dienophile on Dielsâ€Alder <i>endo</i> : <i>exo</i> Selectivity. ChemistryOpen, 2019, 8, 49-57.	1.9	7
8	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	3.3	12
9	Ionâ€Pair S _N 2 Reaction of OH ^{â^`} and CH ₃ Cl: Activation Strain Analyses of Counterion and Solvent Effects. Chemistry - an Asian Journal, 2018, 13, 1138-1147.	3.3	14
10	Alkaloids Reactivity: DFT Analysis of Selective Demethylation Reactions. Journal of Organic Chemistry, 2018, 83, 15101-15109.	3.2	2
11	Diastereoselective [3 + 2] vs [4 + 2] Cycloadditions of Nitroprolinates with α,β-Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity. Journal of Organic Chemistry, 2017, 82, 6298-6312.	3.2	14
12	Mono―and Diâ€Alkylation Processes of DNA Bases by Nitrogen Mustard Mechlorethamine. ChemPhysChem, 2017, 18, 3390-3401.	2.1	4
13	Intramolecular S _E Ar Reactions of Phosphorus Compounds: Computational Approach to the Synthesis of Ï€â€Extended Heterocycles. Chemistry - A European Journal, 2017, 23, 17487-17496.	3.3	14
14	Taniaphos·AgF-catalyzed enantioselective 1,3-dipolar cycloaddition of stabilized azomethine ylides derived from 2,2-dimethoxyacetaldehyde. Tetrahedron, 2016, 72, 6043-6051.	1.9	14
15	New Insights into the Reactivity of Cisplatin with Free and Restrained Nucleophiles: Microsolvation Effects and Base Selectivity in Cisplatin–DNA Interactions. ChemPhysChem, 2016, 17, 3932-3947.	2.1	10
16	Enantioselective Synthesis of Polysubstituted Spiro-nitroprolinates Mediated by a (R,R)-Me-DuPhos·AgF-Catalyzed 1,3-Dipolar Cycloaddition. Organic Letters, 2016, 18, 2926-2929.	4.6	41
17	Resonance driven regioselective demethylation of berberine. Microwave assisted synthesis of berberrubine and its assessment as fluorescent chemosensor for alkanes. Tetrahedron, 2015, 71, 6148-6154.	1.9	12
18	Enantioselective Synthesis of exo-4-Nitroprolinates from NitroÂalkenes and Azomethine Ylides Catalyzed by Chiral PhosphorÂamidite·Silver(I) or Copper(II) Complexes. Synthesis, 2015, 47, 934-943.	2.3	23

#	Article	IF	CITATIONS
19	Regio and diastereoselective multicomponent 1,3-dipolar cycloadditions between prolinate hydrochlorides, aldehydes and dipolarophiles for the direct synthesis of pyrrolizidines. Tetrahedron, 2015, 71, 9645-9661.	1.9	15
20	Efficient Diastereo―and Enantioselective Synthesis of <i>exo</i> â€Nitroprolinates by 1,3â€Dipolar Cycloadditions Catalyzed by Chiral Phosphoramiditeâ‹Silver(I) Complexes. Advanced Synthesis and Catalysis, 2014, 356, 3861-3870.	4.3	28
21	Aggregation and Cooperative Effects in the Aldol Reactions of Lithium Enolates. Chemistry - A European Journal, 2013, 19, 13761-13773.	3.3	17
22	Phosphoramidite–Cu(OTf)2 Complexes as Chiral Catalysts for 1,3-Dipolar Cycloaddition of Iminoesters and Nitroalkenes. Organic Letters, 2013, 15, 2902-2905.	4.6	64
23	Synthetic scope and DFT analysis of the chiral binap–gold(I) complex-catalyzed 1,3-dipolar cycloaddition of azlactones with alkenes. Beilstein Journal of Organic Chemistry, 2013, 9, 2422-2433.	2.2	7