Julio Gomez-Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1717168/publications.pdf

Version: 2024-02-01

156 papers 18,329 citations

51 h-index 134 g-index

162 all docs

162 docs citations

162 times ranked 22095 citing authors

#	Article	IF	CITATIONS
1	The effect of rippling on the mechanical properties of graphene. Nano Materials Science, 2022, 4, 18-26.	3.9	19
2	Ultralarge Freeâ€Standing Imineâ€Based Covalent Organic Framework Membranes Fabricated via Compression. Advanced Science, 2022, 9, e2104643.	5 . 6	31
3	Preparation of high-quality few-layers bismuthene hexagons. Applied Materials Today, 2022, 26, 101360.	2.3	9
4	Confined Crack Propagation in MoS ₂ Monolayers by Creating Atomic Vacancies. ACS Nano, 2021, 15, 1210-1216.	7.3	19
5	Exfoliation of Alphaâ€Germanium: A Covalent Diamondâ€Like Structure. Advanced Materials, 2021, 33, e2006826.	11.1	27
6	Direct Visualization and Effects of Atomicâ€Scale Defects on the Optoelectronic Properties of Hexagonal Boron Nitride. Advanced Electronic Materials, 2021, 7, 2001177.	2.6	8
7	Continuousâ€Flow Synthesis of Highâ€Quality Fewâ€Layer Antimonene Hexagons. Advanced Functional Materials, 2021, 31, 2101616.	7.8	8
8	Built-up AFM tips by metal nanoclusters engineering. Applied Surface Science, 2021, 550, 149325.	3.1	2
9	Few-layer antimonene electrical properties. Applied Materials Today, 2021, 24, 101132.	2.3	6
10	Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure–property relationships through nanomechanics. Nanoscale, 2020, 12, 1128-1137.	2.8	20
11	Improved Graphene Blisters by Ultrahigh Pressure Sealing. ACS Applied Materials & Diterfaces, 2020, 12, 37750-37756.	4.0	8
12	Customized MFM probes based on magnetic nanorods. Nanoscale, 2020, 12, 10090-10097.	2.8	25
13	AFM Manipulation of Gold Nanowires To Build Electrical Circuits. Nano Letters, 2019, 19, 5459-5468.	4.5	39
14	Tunable Graphene Electronics with Local Ultrahigh Pressure. Advanced Functional Materials, 2019, 29, 1806715.	7.8	15
15	High Electrical Conductivity of Single Metal–Organic Chains. Advanced Materials, 2018, 30, e1705645.	11.1	13
16	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
17	Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 2018, 30, 1703771.	11.1	245
18	One-Pot Preparation of Mechanically Robust, Transparent, Highly Conductive, and Memristive Metal–Organic Ultrathin Film. ACS Nano, 2018, 12, 10171-10177.	7.3	15

#	Article	IF	CITATIONS
19	High-Resolution Atomic Force Microscopy Imaging of Nucleic Acids. Methods in Molecular Biology, 2018, 1814, 3-17.	0.4	2
20	Optical Identification of Few-Layer Antimonene Crystals. ACS Photonics, 2017, 4, 600-605.	3.2	62
21	Tailoring the thermal expansion of graphene via controlled defect creation. Carbon, 2017, 116, 670-677.	5 . 4	41
22	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie - International Edition, 2017, 56, 14389-14394.	7.2	83
23	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie, 2017, 129, 14581-14586.	1.6	26
24	The influence of strain on the elastic constants of graphene. Carbon, 2017, 124, 42-48.	5.4	48
25	Formation of Conductive DNA-Based Nanowires via Conjugation of dsDNA with Cationic Peptide. Nanomaterials, 2017, 7, 128.	1.9	5
26	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Advanced Materials, 2016, 28, 6332-6336.	11.1	444
27	Environmental effects in mechanical properties of few-layer black phosphorus. 2D Materials, 2016, 3, 031007.	2.0	39
28	Antimonene: Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions (Adv. Mater.) Tj ETQq(00.fgBT 11.1	/Overlock 10
29	Fewâ€Layer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie, 2016, 128, 14557-14561.	1.6	74
30	Few‣ayer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie - International Edition, 2016, 55, 14345-14349.	7.2	346
31	Rýcktitelbild: Few-Layer Antimonene by Liquid-Phase Exfoliation (Angew. Chem. 46/2016). Angewandte Chemie, 2016, 128, 14686-14686.	1.6	1
32	High resolution atomic force microscopy of double-stranded RNA. Nanoscale, 2016, 8, 11818-11826.	2.8	42
33	Magnetic Force Microscopy in Liquids. Small, 2015, 11, 4731-4736.	5.2	26
34	Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chemical Science, 2015, 6, 2553-2558.	3.7	141
35	â€ ⁻ Flatten plus': a recent implementation in WSxM for biological research. Bioinformatics, 2015, 31, 2918-2920.	1.8	19
36	Improving the Lateral Resolution of Quartz Tuning Fork-Based Sensors in Liquid by Integrating Commercial AFM Tips into the Fiber End. Sensors, 2015, 15, 1601-1610.	2.1	9

#	Article	IF	CITATIONS
37	Confining Crack Propagation in Defective Graphene. Nano Letters, 2015, 15, 2050-2054.	4.5	66
38	Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chemical Science, 2015, 6, 1949-1958.	3.7	40
39	Exfoliated graphite flakes as soft-electrodes for precisely contacting nanoobjects. 2D Materials, 2015, 2, 035008.	2.0	3
40	Increasing the elastic modulus of graphene by controlled defect creation. Nature Physics, 2015, 11, 26-31.	6.5	298
41	Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links. Physical Review E, 2014, 89, 052710.	0.8	9
42	Atmospheric contaminants on graphitic surfaces. Carbon, 2013, 61, 33-39.	5.4	72
43	Solventâ€Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer. Advanced Materials, 2013, 25, 2141-2146.	11.1	146
44	Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nature Communications, 2013, 4, 1709.	5.8	60
45	Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy. Nanotechnology, 2013, 24, 135701.	1.3	29
46	The Isolation of Single MMX Chains from Solution: Unravelling the Assembly–Disassembly Process. Chemistry - A European Journal, 2013, 19, 15518-15529.	1.7	7
47	High-resolution dynamic atomic force microscopy in liquids with different feedback architectures. Beilstein Journal of Nanotechnology, 2013, 4, 153-163.	1.5	13
48	Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12028-12033.	3.3	64
49	Fast and non-invasive conductivity determination by the dielectric response of reduced graphene oxide: an electrostatic force microscopy study. Nanoscale, 2012, 4, 7231.	2.8	10
50	Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids. Beilstein Journal of Nanotechnology, 2012, 3, 336-344.	1.5	24
51	Step like surface potential on few layered graphene oxide. Applied Physics Letters, 2012, 101, 263109.	1.5	21
52	Resolving Structure and Mechanical Properties at the Nanoscale of Viruses with Frequency Modulation Atomic Force Microscopy. PLoS ONE, 2012, 7, e30204.	1.1	30
53	Minimizing tip–sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy, 2012, 114, 56-61.	0.8	77
54	Built-In Mechanical Stress in Viral Shells. Biophysical Journal, 2011, 100, 1100-1108.	0.2	75

#	Article	IF	CITATIONS
55	2D materials: to graphene and beyond. Nanoscale, 2011, 3, 20-30.	2.8	1,395
56	Coordination Polymers for Nanoelectronics. Advanced Materials, 2011, 23, 5311-5317.	11.1	48
57	Noninvasive Protein Structural Flexibility Mapping by Bimodal Dynamic Force Microscopy. Physical Review Letters, 2011, 106, 198101.	2.9	117
58	Conductive Nanostructures of MMX Chains. Advanced Functional Materials, 2010, 20, 1451-1457.	7.8	45
59	Highly conductive self-assembled nanoribbons of coordination polymers. Nature Nanotechnology, 2010, 5, 110-115.	15.6	94
60	Upper Bound for the Magnetic Force Gradient in Graphite. Physical Review Letters, 2010, 105, 257203.	2.9	29
61	One-dimensional coordination polymers on surfaces: towards single molecule devices. Chemical Society Reviews, 2010, 39, 4220.	18.7	124
62	Ordering phthalocyanine–C60 fullerene conjugates on individual carbon nanotubes. Chemical Communications, 2010, 46, 4692.	2.2	15
63	Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 2010, 46, 3262.	2.2	225
64	Initial Stages of the Contact between a Metallic Tip and Carbon Nanotubes. Physical Review Letters, 2009, 102, 106801.	2.9	17
65	Organization of Coordination Polymers on Surfaces by Direct Sublimation. Advanced Materials, 2009, 21, 2025-2028.	11.1	41
66	Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly onductive Graphene Monolayers. Advanced Materials, 2009, 21, 4683-4686.	11.1	223
67	Coordination Polymers: Organization of Coordination Polymers on Surfaces by Direct Sublimation (Adv. Mater. 20/2009). Advanced Materials, 2009, 21, NA-NA.	11.1	0
68	Graphene Monolayers: Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers (Adv. Mater. 46/2009). Advanced Materials, 2009, 21, n/a-n/a.	11.1	63
69	Towards Molecular Wires Based on Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 2885-2896.	1.0	55
70	Ultralong Natural Graphene Nanoribbons and Their Electrical Conductivity. Small, 2009, 5, 924-927.	5.2	33
71	Bipyridine-modified oligonucleotides: Aggregation in the presence of metal ions. Inorganica Chimica Acta, 2009, 362, 985-992.	1.2	21
72	Variable-field magnetic force microscopy. Ultramicroscopy, 2009, 109, 693-699.	0.8	38

#	Article	IF	Citations
73	Synthesis of Designed Conductive One-Dimensional Coordination Polymers of Ni(II) with 6-Mercaptopurine and 6-Thioguanine. Inorganic Chemistry, 2009, 48, 7931-7936.	1.9	44
74	Origins of phase contrast in the atomic force microscope in liquids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13655-13660.	3.3	109
75	Azafullerene-like Nanosized Clusters. ACS Nano, 2009, 3, 3352-3357.	7.3	11
76	Use of Inorganic Fullerene-like WS ₂ to Produce New High-Performance Polyphenylene Sulfide Nanocomposites: Role of the Nanoparticle Concentration. Journal of Physical Chemistry B, 2009, 113, 10104-10111.	1.2	54
77	Dependence of the Single Walled Carbon Nanotube Length with Growth Temperature and Catalyst Density by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2009, 9, 2830-2835.	0.9	4
78	Highly Conductive Supramolecular Nanostructures of a Covalently Linked Phthalocyanine–C ₆₀ Fullerene Conjugate. Angewandte Chemie - International Edition, 2008, 47, 2026-2031.	7.2	72
79	Unmasking Imaging Forces on Soft Biological Samples in Liquids When Using Dynamic Atomic Force Microscopy: A Case Study on Viral Capsids. Biophysical Journal, 2008, 95, 2520-2528.	0.2	57
80	Direct evidence of nanowires formation from a Cu(i) coordination polymer. Chemical Communications, 2008, , 945-947.	2.2	43
81	Time-Dependence Structures of Coordination Network Wires in Solution. ACS Nano, 2008, 2, 2051-2056.	7.3	28
82	Anderson localization regime in carbon nanotubes: size dependent properties. Journal of Physics Condensed Matter, 2008, 20, 304211.	0.7	25
83	Covalent deposition of ferritin nanoparticles onto gold surfaces. Nanotechnology, 2008, 19, 025302.	1.3	11
84	Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid. Review of Scientific Instruments, 2008, 79, 126106.	0.6	45
85	Quasi-simultaneous imaging/pulling analysis of single polyprotein molecules by atomic force microscopy. Review of Scientific Instruments, 2007, 78, 113707.	0.6	22
86	Design of molecular wires based on one-dimensional coordination polymers. Applied Physics Letters, 2007, 90, 193107.	1.5	24
87	Effect of Gold Adsorption on the Conductive Properties of <i>Cyclo</i> Journal of Nanoscience and Nanotechnology, 2007, 7, 4359-4364.	0.9	0
88	WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 2007, 78, 013705.	0.6	6,705
89	Voltage and Length-Dependent Phase Diagram of the Electronic Transport in Carbon Nanotubes. Nano Letters, 2007, 7, 2568-2573.	4.5	32
90	MMX polymer chains on surfaces. Chemical Communications, 2007, , 1591-1593.	2.2	42

#	Article	IF	Citations
91	Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix[4]arenes. Chemistry - A European Journal, 2007, 13, 5075-5081.	1.7	53
92	Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. Inorganica Chimica Acta, 2007, 360, 48-54.	1.2	23
93	Conductance Oscillations in Squashed Carbon Nanotubes. Physical Review Letters, 2006, 96, 076803.	2.9	34
94	Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One-Dimensional Coordination Polymers:  Synthesis and Scanning Probe Microscopy Characterization. Inorganic Chemistry, 2006, 45, 7642-7650.	1.9	52
95	Studying electrical transport in carbon nanotubes by conductance atomic force microscopy. Journal of Materials Science: Materials in Electronics, 2006, 17, 475-482.	1.1	12
96	DNA-mediated anisotropic mechanical reinforcement of a virus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13706-13711.	3.3	186
97	Parametric resonance based scanning probe microscopy. Applied Physics Letters, 2006, 88, 193108.	1.5	36
98	Quantitative theory for the imaging of conducting objects in electrostatic force microscopy. Applied Physics Letters, 2006, 89, 173122.	1.5	28
99	Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Materials, 2005, 4, 534-539.	13.3	378
100	From Coordination Polymer Macrocrystals to Nanometric Individual Chains. Advanced Materials, 2005, 17, 1761-1765.	11.1	73
101	Scanning Probe Microscopy Characterization of Single Chains Based on a One-Dimensional Oxalato-Bridged Manganese(II) Complex with 4-Aminotriazole. Inorganic Chemistry, 2005, 44, 8343-8348.	1.9	52
102	Radial Electromechanical Properties of Carbon Nanotubes. Advanced Materials, 2004, 16, 549-552.	11.1	43
103	Jumping mode atomic force microscopy obtains reproducible images of Alzheimer paired helical filaments in liquids. European Polymer Journal, 2004, 40, 927-932.	2.6	6
104	Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Physical Review E, 2004, 69, 031915.	0.8	100
105	Electrostatic force gradient signal: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy. Nanotechnology, 2003, 14, 332-340.	1.3	79
106	Jumping mode scanning force microscopy: a suitable technique for imaging DNA in liquids. Applied Surface Science, 2003, 210, 22-26.	3.1	12
107	Interaction forces and conduction properties between multi wall carbon nanotube tips and $Au(111)$. Ultramicroscopy, 2003, 96, 83-92.	0.8	7
108	Topographic characterization and electrostatic response of M-DNA studied by atomic force microscopy. Nanotechnology, 2003, 14, 128-133.	1.3	39

#	Article	IF	CITATIONS
109	Vibrational spectroscopy on single C60 molecules: The role of molecular orientation. Journal of Chemical Physics, 2002, 117, 9531-9534.	1.2	51
110	Resolution of site-specific bonding properties of C60 adsorbed on Au(111). Journal of Chemical Physics, 2002, $116,832-836$.	1.2	136
111	Performing current versus voltage measurements of single-walled carbon nanotubes using scanning force microscopy. Applied Physics Letters, 2002, 80, 1462-1464.	1.5	46
112	Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8484-8487.	3.3	128
113	Scanning force microscopy three-dimensional modes applied to the study of the dielectric response of adsorbed DNA molecules. Nanotechnology, 2002, 13, 314-317.	1.3	42
114	Electrostatic scanning force microscopy images of long molecules: single-walled carbon nanotubes and DNA. Nanotechnology, 2002, 13, 309-313.	1.3	28
115	Nonlinear Resistance versus Length in Single-Walled Carbon Nanotubes. Physical Review Letters, 2002, 88, 036804.	2.9	85
116	Scanning force microscopy jumping and tapping modes in liquids. Applied Physics Letters, 2002, 81, 2620-2622.	1.5	40
117	Comparison of strain gage and interferometric detection for measurement and control of piezoelectric actuators. Materials Characterization, 2002, 48, 133-140.	1.9	9
118	Mechanical behaviour of yttria tetragonal zirconia polycrystalline nanoceramics: dependence on the glassy phase content. Journal of the European Ceramic Society, 2002, 22, 2603-2607.	2.8	12
119	Visualization of single-walled carbon nanotubes electrical networks by scanning force microspy. Applied Physics Letters, 2001, 79, 2979-2981.	1.5	22
120	First principles study of the adsorption of C60 on Si(1 1 1). Surface Science, 2001, 482-485, 39-43.	0.8	14
121	Different stages of water adsorption on Au studied by dynamic SFM and jumping mode. Applied Physics A: Materials Science and Processing, 2001, 72, S137-S140.	1.1	5
122	Macroscopic water deposits on polycrystalline gold measured by scanning force microscopy. Ultramicroscopy, 2001, 86, 1-9.	0.8	9
123	Electrical characterization of single-walled carbon nanotubes with Scanning Force Microscopy. Materials Science and Engineering C, 2001, 15, 149-151.	3.8	14
124	Mechanical and Electrical Properties of Nanosized Contacts on Single-Walled Carbon Nanotubes. Advanced Materials, 2000, 12, 573-576.	11.1	37
125	In situ observation of electromigration in micrometre-sized gold stripes by scanning force microscopy. Surface and Interface Analysis, 2000, 30, 278-282.	0.8	7
126	Seeing molecular orbitals. Chemical Physics Letters, 2000, 321, 78-82.	1.2	117

#	Article	IF	Citations
127	Study of tip–sample interaction in scanning force microscopy. Applied Surface Science, 2000, 157, 285-289.	3.1	10
128	Application of non-contact scanning force microscopy to the study of water adsorption on graphite, gold and mica. Applied Surface Science, 2000, 157, 393-397.	3.1	42
129	Tip-sample interaction in tapping-mode scanning force microscopy. Physical Review B, 2000, 61, 14179-14183.	1.1	50
130	Comment on "ldentifying Molecular Orientation of IndividualC60on aSi(111)â^'(7×7)Surface― Physical Review Letters, 2000, 85, 2653-2653.	2.9	12
131	The role of shear forces in scanning force microscopy: a comparison between the jumping mode and tapping mode. Surface Science, 2000, 453, 152-158.	0.8	42
132	Ratchet effect in surface electromigration detected with scanning force microscopy in gold micro-stripes. Surface Science, 2000, 464, 123-130.	0.8	8
133	Absence of dc-Conductivity inl̂»-DNA. Physical Review Letters, 2000, 85, 4992-4995.	2.9	602
134	Adsorption of Water on Solid Surfaces Studied by Scanning Force Microscopy. Langmuir, 2000, 16, 5086-5092.	1.6	57
135	Local cleavage of the Si(111)7×7surface by STM. Physical Review B, 1999, 59, 9768-9770.	1.1	2
136	Adhesion Maps Using Scanning Force Microscopy Techniques. Journal of Adhesion, 1999, 71, 339-356.	1.8	21
137	Surface phases of SiC islands grown over Si(111)-(7 \tilde{A} — 7) using C60 as a precursor. Surface Science, 1998, 397, L267-L272.	0.8	26
138	Scanning tunneling microscopy and spectroscopy of atomic modifications on WSe2. Surface Science, 1998, 398, 231-240.	0.8	5
139	Observation of Liquid Neck Formation with Scanning Force Microscopy Techniques. Langmuir, 1998, 14, 2230-2234.	1.6	55
140	Jumping mode scanning force microscopy. Applied Physics Letters, 1998, 73, 3300-3302.	1.5	167
141	Room temperature Coulomb blockade and Coulomb staircase from selfâ€assembled nanostructures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1178-1183.	0.9	58
142	Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Physical Review B, 1995, 52, 9071-9077.	1.1	339
143	Electrical and mechanical properties of metallic nanowires: Conductance quantization and localization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1280.	1.6	30
144	Properties of Metallic Nanowires: From Conductance Quantization to Localization. Science, 1995, 267, 1793-1795.	6.0	357

#	Article	IF	CITATIONS
145	Coadsorbate induced compression of sulfur overlayers on Re(0001) and Pt(111) by CO. Journal of Chemical Physics, 1994, 100, 6092-6097.	1.2	31
146	Quantum contact in gold nanostructures by scanning tunneling microscopy. Physical Review Letters, 1993, 71, 1852-1855.	2.9	556
147	Scanning Tunnelling miroscopy and electrochemical response of electrofacetted gold electrodes. Electrochimica Acta, 1989, 34, 619-624.	2.6	15
148	Scanning tunneling microscopy of amorphous alloy electrocatalysts for water electrolysis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 265, 67-75.	0.3	14
149	A scanning tunnelling microscope study of groove structures in polycarbonate optical discs. Journal of Materials Science, 1989, 24, 1739-1747.	1.7	14
150	Imaging cos(s, z): A method to separate the geometric and compositional contributions on STM barrier height profiles. Surface Science, 1989, 220, 152-164.	0.8	22
151	Are the high Tc superconducting materials bulk superconductors or grain boundary percolating network superconductors? (abstract). Journal of Applied Physics, 1988, 63, 4213-4213.	1.1	20
152	Scanning tunneling microscopy of platinum electrode surfaces with different preferred crystallographic orientations. Surface Science, 1987, 181, 98-106.	0.8	26
153	Scanning tunneling microscopy of electrochemically activated platinum surfaces. A direct ex-situ determination of the electrode nanotopography. Journal of the American Chemical Society, 1987, 109, 1730-1733.	6.6	57
154	Surface topography of (100)-type electro-faceted platinum from scanning tunnelling microscopy and electrochemistry. Nature, 1986, 323, 612-614.	13.7	53
155	On the High-Temperature Plasticity of Ceria-Doped Zirconia Nanostructured Polycrystals. Key Engineering Materials, 0, 423, 61-66.	0.4	4
156	AFM: Basic Concepts., 0,, 1-34.		3