Janus J Eriksen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716977/publications.pdf

Version: 2024-02-01

		516710	477307
31	2,304	16	29
papers	2,304 citations	h-index	g-index
31	31	31	2392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The <scp>D</scp> alton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 269-284.	14.6	1,166
2	Recent developments in the P <scp>y</scp> SCF program package. Journal of Chemical Physics, 2020, 153, 024109.	3.0	388
3	The Ground State Electronic Energy of Benzene. Journal of Physical Chemistry Letters, 2020, 11, 8922-8929.	4.6	90
4	Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in <i>para</i> -nitroaniline. Molecular Physics, 2013, 111, 1235-1248.	1.7	79
5	Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD(T) Model. Journal of Chemical Theory and Computation, 2015, 11, 2984-2993.	5.3	77
6	Virtual Orbital Many-Body Expansions: A Possible Route towards the Full Configuration Interaction Limit. Journal of Physical Chemistry Letters, 2017, 8, 4633-4639.	4.6	60
7	Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime. Journal of Chemical Theory and Computation, 2018, 14, 5180-5191.	5.3	45
8	A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy. Journal of Chemical Physics, 2014, 140, 064108.	3.0	40
9	On the importance of excited state dynamic response electron correlation in polarizable embedding methods. Journal of Computational Chemistry, 2012, 33, 2012-2022.	3.3	38
10	Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime. Journal of Chemical Theory and Computation, 2019, 15, 4873-4884.	5.3	38
11	Generalized Many-Body Expanded Full Configuration Interaction Theory. Journal of Physical Chemistry Letters, 2019, 10, 7910-7915.	4.6	30
12	The Shape of Full Configuration Interaction to Come. Journal of Physical Chemistry Letters, 2021, 12, 418-432.	4.6	29
13	Computational protocols for prediction of solute NMR relative chemical shifts. A case study of <scp>L</scp> â€tryptophan in aqueous solution. Journal of Computational Chemistry, 2011, 32, 2853-2864.	3.3	25
14	On the convergence of perturbative coupled cluster triples expansions: Error cancellations in the CCSD(T) model and the importance of amplitude relaxation. Journal of Chemical Physics, 2015, 142, 014102.	3.0	23
15	A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation. Journal of Chemical Physics, 2016, 144, 064103.	3.0	18
16	Efficient and portable acceleration of quantum chemical many-body methods in mixed floating point precision using OpenACC compiler directives. Molecular Physics, 2017, 115, 2086-2101.	1.7	18
17	Equation-of-motion coupled cluster perturbation theory revisited. Journal of Chemical Physics, 2014, 140, 174114.	3.0	17
18	Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions. Journal of Chemical Physics, 2016, 144, 194102.	3.0	16

#	Article	lF	CITATIONS
19	Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires. Computer Physics Communications, 2017, 212, 152-160.	7.5	16
20	Communication: The performance of non-iterative coupled cluster quadruples models. Journal of Chemical Physics, 2015, 143, 041101.	3.0	15
21	Ground and excited state first-order properties in many-body expanded full configuration interaction theory. Journal of Chemical Physics, 2020, 153, 154107.	3.0	14
22	The same number of optimized parameters scheme for determining intermolecular interaction energies. Journal of Chemical Physics, 2015, 142, 114116.	3.0	12
23	Mean-field density matrix decompositions. Journal of Chemical Physics, 2020, 153, 214109.	3.0	10
24	Incremental treatments of the full configuration interaction problem. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1525.	14.6	10
25	The Second-Order Polarization Propagator Approximation (SOPPA) method coupled to the polarizable continuum model. Computational and Theoretical Chemistry, 2014, 1040-1041, 54-60.	2.5	9
26	Convergence of coupled cluster perturbation theory. Journal of Chemical Physics, 2016, 145, 224104.	3.0	6
27	Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions. Journal of Chemical Physics, 2016, 144, 194103.	3.0	6
28	Decomposed Mean-Field Simulations of Local Properties in Condensed Phases. Journal of Physical Chemistry Letters, 2021, 12, 6048-6055.	4.6	4
29	Electronic excitations through the prism of mean-field decomposition techniques. Journal of Chemical Physics, 2022, 156, 061101.	3.0	4
30	Incrementally accelerating the RI-MP2 correlated method of electronic structure theory using OpenACC compiler directives., 2017,, 241-265.		1
31	Foreword: Prof. Gauss Festschrift. Molecular Physics, 2020, 118, e1817247.	1.7	O