LuÃ-sa C Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716388/publications.pdf

Version: 2024-02-01

448610 466096 1,116 57 19 32 citations g-index h-index papers 57 57 57 1407 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chitosan \hat{I}^2 -TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
2	Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. Materials, 2022, 15, 1676.	1.3	7
3	Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. Biomacromolecules, 2022, 23, 2415-2427.	2.6	3
4	Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers, 2022, 14, 2473.	2.0	6
5	Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydrate Polymers, 2021, 257, 117601.	5.1	3
6	Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydrate Polymers, 2020, 249, 116839.	5.1	9
7	Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Marine Drugs, 2020, 18, 346.	2.2	20
8	Fundamentals on biopolymers and global demand. , 2020, , 3-34.		9
9	Acemannan-based films: an improved approach envisioning biomedical applications. Materials Research Express, 2019, 6, 095406.	0.8	10
10	An alternative approach to prepare alginate/acemannan 3D architectures. SN Applied Sciences, 2019, 1, 1.	1.5	7
11	Effect of two different RAFT reactions on grafting MMA from pre-irradiated PP film. Radiation Physics and Chemistry, 2019, 159, 222-230.	1.4	1
11	Effect of two different RAFT reactions on grafting MMA from pre-irradiated PP film. Radiation Physics and Chemistry, 2019, 159, 222-230. Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852.	1.4	12
	and Chemistry, 2019, 159, 222-230. Engineered tubular structures based on chitosan for tissue engineering applications. Journal of		
12	and Chemistry, 2019, 159, 222-230. Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852. Effect of sintering pressure on microstructure and mechanical properties of hot-pressed	1.2	12
12	and Chemistry, 2019, 159, 222-230. Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852. Effect of sintering pressure on microstructure and mechanical properties of hot-pressed Ti6Al4V-ZrO2 materials. Materials and Design, 2017, 120, 394-403. d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of	1.2 3.3	12 27
12 13 14	Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852. Effect of sintering pressure on microstructure and mechanical properties of hot-pressed Ti6Al4V-ZrO2 materials. Materials and Design, 2017, 120, 394-403. d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256. Diâ€ureasil Hybrid Electrolytes Incorporating a New Proton Ionic Liquid. ChemElectroChem, 2016, 3,	1.2 3.3 1.9	12 27 4
12 13 14	and Chemistry, 2019, 159, 222-230. Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852. Effect of sintering pressure on microstructure and mechanical properties of hot-pressed Ti6Al4V-ZrO2 materials. Materials and Design, 2017, 120, 394-403. d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256. Diâ€ureasil Hybrid Electrolytes Incorporating a New Proton Ionic Liquid. ChemElectroChem, 2016, 3, 783-789. Light responsive multilayer surfaces with controlled spatial extinction capability. Journal of	1.2 3.3 1.9	12 27 4

#	Article	IF	Citations
19	Quasi-anhydrous proton conducting di-ureasil hybrid electrolytes incorporating a protic ionic liquid. Electrochimica Acta, 2014, 147, 288-293.	2.6	6
20	Vibrational analysis of d-PCL(530)/siloxane-based hybrid electrolytes doped with two lithium salts. lonics, 2013, 19, 1803-1809.	1.2	7
21	Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. Journal of Electroanalytical Chemistry, 2013, 689, 223-232.	1.9	66
22	Study and Characterization of a Novel Polymer Electrolyte Based on Agar Doped with Magnesium Triflate. Molecular Crystals and Liquid Crystals, 2013, 570, 1-11.	0.4	31
23	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	1.9	15
24	Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochimica Acta, 2013, 88, 473-476.	2.6	39
25	Gelatin _{<i>n</i>/i>} Zn(CF ₃ SO ₃) ₂ Polymer Electrolytes for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.	1.5	22
26	Preparation and Characterization of Hybrid Oxyethylene/Siloxane Electrolyte Systems. Electroanalysis, 2013, 25, 515-522.	1.5	4
27	Investigation of polymer electrolyte based on agar and ionic liquids. EXPRESS Polymer Letters, 2012, 6, 1007-1016.	1.1	77
28	Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications. Ferroelectrics, 2012, 430, 103-107.	0.3	20
29	Poly (É>-caprolactone)/siloxane biohybrids with application in "smart windows― Synthetic Metals, 2012, 161, 2682-2687.	2.1	11
30	Characterization of flexible DNA films. Electrochemistry Communications, 2012, 22, 189-192.	2.3	15
31	Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes. Electrochimica Acta, 2012, 86, 339-345.	2.6	7
32	Structural studies of novel di-ureasil ormolytes doped with lithium hexafluoroantimonate. Solid State Ionics, 2012, 226, 7-14.	1.3	4
33	Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.	1.7	51
34	Natural Membranes for Application in Biomedical Devices. Molecular Crystals and Liquid Crystals, 2012, 562, 147-155.	0.4	3
35	Study of electrochromic devices with nanocomposites polymethacrylate hydroxyethylene resin based electrolyte. Polymers for Advanced Technologies, 2012, 23, 791-795.	1.6	15
36	Synthesis and electrochemical characterization of aPEO-based polymer electrolytes. Journal of Solid State Electrochemistry, 2012, 16, 1623-1629.	1.2	3

#	Article	IF	CITATIONS
37	Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators. Journal of Membrane Science, 2012, 407-408, 193-201.	4.1	110
38	Photoluminescent polymer electrolyte based on agar and containing europium picrate for electrochemical devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 488-493.	1.7	25
39	Effect of the microsctructure and lithium-ion content in poly[(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 applications. Solid State Ionics, 2012, 217, 19-26.	Tf 50 667 1.3	Td (fluorid 29
40	Li ⁺ - and Eu ³⁺ -Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2953-2965.	4.0	24
41	K+-doped poly(Îμ-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State lonics, 2011, 204-205, 129-139.	1.3	18
42	Preliminary characterisation of LiAsF6 hybrid polymer electrolytes for electrochromic devices. Electrochimica Acta, 2011, 57, 52-57.	2.6	6
43	Characterization of polyetherâ€poly(methyl methacrylate)â€lithium perchlorate blend electrolytes. Polymers for Advanced Technologies, 2011, 22, 1753-1759.	1.6	9
44	Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics, 2011, 193, 39-42.	1.3	38
45	Functional novel polymer electrolytes containing europium picrate. Materials Research Innovations, 2011, 15, s3-s7.	1.0	9
46	Synthesis and Thermal Behavior of An Amorphous Solid Polymer Electrolyte. ECS Transactions, 2010, 25, 383-394.	0.3	4
47	Gelatin in electrochromic devices. Optical Materials, 2010, 32, 719-722.	1.7	43
48	Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes. Electrochimica Acta, 2010, 55, 1495-1502.	2.6	47
49	Mg2+-doped poly(É>-caprolactone)/siloxane biohybrids. Electrochimica Acta, 2010, 55, 1328-1332.	2.6	17
50	Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. Journal of Materials Chemistry, 2010, 20, 723-730.	6.7	37
51	Novel Nanocomposites Polymethacrylate Hydroxyethylene Resin Based Electrolyte. ECS Transactions, 2009, 19, 79-83.	0.3	O
52	Interpenetrating Networks Based on Poly(trimethylene Carbonate) and Poly(ethylene oxide) Blends Doped With Lithium Salts. ECS Transactions, 2009, 16, 157-165.	0.3	1
53	New Developments in Conducting Polymers Based on Commercial Gelatin. ECS Transactions, 2009, 16, 413-419.	0.3	3
54	Characterization of Lithium-based Solid Polymer Electrolytes. ECS Transactions, 2009, 19, 15-23.	0.3	3

LuÃsa C Rodrigues

#	Article	IF	CITATIONS
55	Application of hybrid materials in solid-state electrochromic devices. Optical Materials, 2009, 31, 1467-1471.	1.7	17
56	Preparation of hybrid organic–inorganic materials based on a di-ureasil matrix doped with lithium bis(trifluoromethanesulfonyl)imide. Journal of Power Sources, 2008, 180, 607-611.	4.0	11
57	Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-ally glycidyl ether). Electrochimica Acta, 2007, 53, 1427-1431.	2.6	23