Mingjie Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	6.6	817
2	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	1.6	719
3	Highâ€Performance Reversible Aqueous Znâ€lon Battery Based on Porous MnO <i>_x</i> Nanorods Coated by MOFâ€Derived Nâ€Doped Carbon. Advanced Energy Materials, 2018, 8, 1801445.	10.2	430
4	A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angewandte Chemie - International Edition, 2011, 50, 422-426.	7.2	344
5	Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells. Advanced Materials, 2008, 20, 3900-3904.	11.1	318
6	Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Applied Materials Today, 2018, 11, 82-135.	2.3	231
7	Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nature Communications, 2020, 11, 643.	5.8	161
8	Direct Growth of Singleâ€Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts. Chemistry - A European Journal, 2010, 16, 829-835.	1.7	117
9	Wellâ€Defined Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2001537.	10.2	102
10	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Đoped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
11	Engineering interfacial structure in "Giant―PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy, 2016, 30, 531-541.	8.2	88
12	Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 1526.	1.6	85
13	3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2017, 9, 36944-36954.	4.0	83
14	Biomassâ€derived nonprecious metal catalysts for oxygen reduction reaction: The demandâ€oriented engineering of active sites and structures. , 2020, 2, 561-581.		83
15	An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Applied Catalysis B: Environmental, 2018, 237, 85-93.	10.8	78
16	Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy, 2019, 55, 234-259.	8.2	71
17	Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 2021, 13, 100066.	1.9	66
18	Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chemical Communications, 2009, , 7048.	2.2	63

Mingjie Wu

#	Article	IF	CITATIONS
19	Litchi-like porous Fe/N/C spheres with atomically dispersed FeN _x promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 4605-4610.	5.2	54
20	Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. Advanced Energy Materials, 2019, 9, 1900889.	10.2	53
21	Phosphor Polymer Nanocomposite: ZnO:Tb ³⁺ Embedded Polystyrene Nanocomposite Thin Films for Solid-State Lighting Applications. ACS Applied Nano Materials, 2018, 1, 977-988.	2.4	51
22	Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide. Nano-Micro Letters, 2022, 14, 25.	14.4	49
23	Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat, 2021, 1, 150-173.	7.8	47
24	Nanostructured Metal Borides for Energyâ€Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. Small Methods, 2021, 5, e2100699.	4.6	47
25	Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. Journal of Materials Chemistry, 2011, 21, 12321.	6.7	46
26	Nanostructured Cobaltâ€Based Electrocatalysts for CO ₂ Reduction: Recent Progress, Challenges, and Perspectives. Small, 2020, 16, e2004158.	5.2	45
27	Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production. Journal of Materials Chemistry A, 2018, 6, 6822-6829.	5.2	44
28	Efficient and stable photoelectrochemical hydrogen generation using optimized colloidal heterostructured quantum dots. Nano Energy, 2021, 79, 105416.	8.2	43
29	Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping. Journal of Nanoparticle Research, 2011, 13, 1207-1218.	0.8	40
30	Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2019, 7, 1447-1471.	2.7	37
31	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€lon Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	7.8	36
32	Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Scientific Reports, 2014, 4, 6439.	1.6	33
33	Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 2022, 155, 111922.	8.2	32
34	Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem, 2021, 14, 4636-4657.	3.6	28
35	Highly Stable and Active Pt/Nb-TiO ₂ Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells. Journal of Nanotechnology, 2012, 2012, 1-8.	1.5	26
36	Design and engineering of graphene nanostructures as independent solar-driven photocatalysts for emerging applications in the field of energy and environment. Molecular Systems Design and Engineering, 2022, 7, 213-238.	1.7	26

Mingjie Wu

#	Article	IF	CITATIONS
37	Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology, 2016, 27, 495405.	1.3	25
38	Near-Infrared Colloidal Manganese-Doped Quantum Dots: Photoluminescence Mechanism and Temperature Response. ACS Photonics, 2019, 6, 2421-2431.	3.2	20
39	Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48923-48933.	4.0	18
40	Inside Cover: Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts (Chem. Eur. J. 3/2010). Chemistry - A European Journal, 2010, 16, 732-732.	1.7	7
41	Titelbild: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. 2/2011). Angewandte Chemie, 2011, 123, 341-341.	1.6	2
42	Cover Picture: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. Int. Ed. 2/2011). Angewandte Chemie - International Edition, 2011, 50, 325-325.	7.2	1