List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1716050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corrosion Science, 2006, 48, 2831-2842.	3.0	436
2	Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corrosion Science, 2010, 52, 3042-3051.	3.0	334
3	Corrosion control of carbon steel in phosphoric acid by purpald – Weight loss, electrochemical and XPS studies. Corrosion Science, 2012, 64, 243-252.	3.0	252
4	Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1M HCl. Materials Letters, 2006, 60, 2840-2843.	1.3	228
5	Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Applied Surface Science, 2006, 252, 4190-4197.	3.1	210
6	New thio-compounds as corrosion inhibitor for steel in 1M HCl. Corrosion Science, 2006, 48, 2470-2479.	3.0	208
7	Corrosion inhibitors for iron in hydrochloride acid solution by newly synthesised pyridazine derivatives. Corrosion Science, 2003, 45, 1675-1684.	3.0	204
8	Corrosion inhibition of iron in 1M HCl by 1-phenyl-5-mercapto-1,2,3,4-tetrazole. Applied Surface Science, 1996, 93, 59-66.	3.1	174
9	Insights into corrosion inhibition behavior of three chalcone derivatives for mild steel in hydrochloric acid solution. Journal of Molecular Liquids, 2017, 238, 71-83.	2.3	171
10	Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. Journal of Molecular Liquids, 2017, 225, 271-280.	2.3	167
11	Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media. Applied Surface Science, 2005, 249, 375-385.	3.1	163
12	Thermodynamic characterisation of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4. Materials Letters, 2006, 60, 1901-1905.	1.3	162
13	Corrosion inhibition of armco iron in 1 M HCl media by new bipyrazolic derivatives. Corrosion Science, 2000, 42, 929-940.	3.0	159
14	Some amino acids as corrosion inhibitors for copper in nitric acid solution. Materials Letters, 2008, 62, 3325-3327.	1.3	155
15	Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium: Experimental and quantum chemical molecular dynamics approach. Materials Chemistry and Physics, 2009, 117, 148-155.	2.0	132
16	A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society, 2014, 18, 450-455.	2.4	111
17	New synthesised pyridazine derivatives as effective inhibitors for the corrosion of pure iron in HCl medium. Progress in Organic Coatings, 2002, 45, 373-378.	1.9	106
18	Inhibitive action of some bipyrazolic compounds on the corrosion of steel in 1M HCl. Materials Chemistry and Physics, 2007, 105, 373-379.	2.0	105

#	Article	IF	CITATIONS
19	Fennel (Foeniculum Vulgare) Essential Oil as Green Corrosion Inhibitor of Carbon Steel in Hydrochloric Acid Solution. Portugaliae Electrochimica Acta, 2011, 29, 127-138.	0.4	105
20	Effect of the substitution of an oxygen atom by sulphur in a pyridazinic molecule towards inhibition of corrosion of steel in 0.5M H2SO4 medium. Progress in Organic Coatings, 2004, 51, 118-124.	1.9	102
21	Inhibition of steel corrosion in 2M H3PO4 by artemisia oil. Applied Surface Science, 2006, 252, 6212-6217.	3.1	100
22	Inhibition of the corrosion of steel in 1M HCl by eugenol derivatives. Applied Surface Science, 2005, 246, 199-206.	3.1	99
23	Essential oil of Salvia aucheri mesatlantica as a green inhibitor for the corrosion of steel in 0.5M H2SO4. Arabian Journal of Chemistry, 2012, 5, 467-474.	2.3	97
24	The effect of some lactones as inhibitors for the corrosion of mild steel in 1M hydrochloric acid. Materials Chemistry and Physics, 2007, 106, 260-267.	2.0	96
25	Investigation of the inhibitive effect of triphenyltin 2-thiophene carboxylate on corrosion of steel in 2M H3PO4 solutions. Applied Surface Science, 2006, 252, 8341-8347.	3.1	95
26	Ruthenium–ligand complex, an efficient inhibitor of steel corrosion in H3PO4 media. Materials Letters, 2007, 61, 1197-1204.	1.3	91
27	Inhibitive Properties and Adsorption of Purpald as a Corrosion Inhibitor for Copper in Nitric Acid Medium. Industrial & Engineering Chemistry Research, 2013, 52, 2560-2568.	1.8	91
28	Substituted uracils as corrosion inhibitors for copper in 3% NaCl solution. Corrosion Science, 2003, 45, 1619-1630.	3.0	90
29	A study of antiâ€corrosive effects of Artemisia oil on steel. Pigment and Resin Technology, 2004, 33, 287-292.	0.5	90
30	Inhibitive properties of 2,5-bis(n-methylphenyl)-1,3,4-oxadiazole and biocide on corrosion, biocorrosion and scaling controls of brass in simulated cooling water. Corrosion Science, 2014, 80, 442-452.	3.0	90
31	Corrosion inhibition of carbon steel in aggressive acidic media with 1-(2-(4-chlorophenyl)-2-oxoethyl)pyridazinium bromide. Journal of Molecular Liquids, 2015, 211, 1000-1008.	2.3	88
32	Chitosan polymer as a green corrosion inhibitor for copper in sulfide-containing synthetic seawater. International Journal of Biological Macromolecules, 2018, 119, 1311-1323.	3.6	86
33	Poly(4-vinylpyridine isopentyl bromide) as inhibitor for corrosion of pure iron in molar sulphuric acid. Progress in Organic Coatings, 2003, 46, 312-316.	1.9	77
34	Poly(4-vinylpyridine-poly(3-oxide-ethylene) tosyle) as an inhibitor for iron in sulphuric acid at 80 °C. Corrosion Science, 2004, 46, 2421-2430.	3.0	77
35	Inhibition of corrosion of iron in citric acid media by aminoacids. Progress in Organic Coatings, 2004, 51, 134-138.	1.9	76
36	Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as corrosion inhibitor for mild steel in hydrochloric acid solutions. Arabian Journal of Chemistry, 2011, 4, 17-24.	2.3	76

#	Article	IF	CITATIONS
37	Weight Loss, Electrochemical, Quantum Chemical Calculation, and Molecular Dynamics Simulation Studies on 2-(Benzylthio)-1,4,5-triphenyl-1H-imidazole as an Inhibitor for Carbon Steel Corrosion in Hydrochloric Acid. Industrial & Engineering Chemistry Research, 2013, 52, 14315-14327.	1.8	71
38	One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex. International Journal of Molecular Sciences, 2013, 14, 23941-23954.	1.8	71
39	New bipyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid solutions. Materials Chemistry and Physics, 2005, 93, 281-285.	2.0	70
40	The inhibited effect of some tetrazolic compounds towards the corrosion of brass in nitric acid solution. Applied Surface Science, 2006, 252, 2389-2395.	3.1	70
41	Synergistic effect of iodide ions on the corrosion inhibition of steel in 0.5M H2SO4 by new chalcone derivatives. Applied Surface Science, 2006, 252, 6236-6242.	3.1	69
42	Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5Âm H2SO4. Journal of Applied Electrochemistry, 2005, 35, 1095-1101.	1.5	68
43	Effect of some tripodal bipyrazolic compounds on C38 steel corrosion in hydrochloric acid solution. Journal of Applied Electrochemistry, 2010, 40, 1575-1582.	1.5	67
44	A pyrazine derivative as corrosion inhibitor for steel in sulphuric acid solution. Applied Surface Science, 2005, 242, 399-406.	3.1	66
45	The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution. Applied Surface Science, 2005, 252, 1378-1385.	3.1	64
46	Study of the inhibition of the corrosion of copper and zinc in HNO3 solution by electrochemical technique and quantum chemical calculations. Arabian Journal of Chemistry, 2010, 3, 55-60.	2.3	62
47	CORROSION INHIBITION OF CARBON STEEL IN ACIDIC MEDIA BY <i>BIFURCARIA BIFURCATA</i> EXTRACT. Chemical Engineering Communications, 2009, 196, 788-800.	1.5	59
48	N-benzyl-N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine as corrosion inhibitor of steel in 1ÂM HCl. Materials Letters, 2007, 61, 799-804.	1.3	56
49	A Combined Experimental and Theoretical Study on the Corrosion Inhibition and Adsorption Behaviour of Quinoxaline Derivative During Carbon Steel Corrosion in Hydrochloric Acid. Portugaliae Electrochimica Acta, 2012, 30, 405-417.	0.4	56
50	APPLICATION OF ESSENTIAL OIL OF <i>ARTEMISIA HERBA ALBA</i> AS GREEN CORROSION INHIBITOR FOR STEEL IN 0.5 M H ₂ SO ₄ . Surface Review and Letters, 2009, 16, 49-54.	0.5	55
51	Corrosion Inhibition of Carbon Steel by Imidazolium and Pyridinium Cations Ionic Liquids in Acidic Environment. Portugaliae Electrochimica Acta, 2011, 29, 375-389.	0.4	55
52	Pyridine–pyrazole compound as inhibitor for steel in 1M HCl. Applied Surface Science, 2005, 240, 341-348.	3.1	53
53	Thiophene derivatives as effective inhibitors for the corrosion of steel in 0.5M H2SO4. Progress in Organic Coatings, 2004, 49, 225-228.	1.9	52
54	Thermodynamic properties of <i>Thymus satureioides</i> essential oils as corrosion inhibitor of tinplate in 0.5 M HCl: chemical characterization and electrochemical study. Green Chemistry Letters and Reviews, 2010, 3, 173-178.	2.1	52

#	Article	IF	CITATIONS
55	Corrosion inhibition of steel in 0.5 M H 2 SO 4 by [(2-pyridin-4-ylethyl)thio]acetic acid. Applied Surface Science, 2005, 250, 50-56.	3.1	51
56	1,3-Bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane as corrosion inhibitor for steel in 0.5M H2SO4 solution. Applied Surface Science, 2005, 252, 339-344.	3.1	51
57	Corrosion inhibition of steel in sulphuric acid by pyrrolidine derivatives. Applied Surface Science, 2006, 252, 2178-2185.	3.1	51
58	Inhibition of copper corrosion by bipyrazole compound in aerated 3% NaCl. Journal of Saudi Chemical Society, 2012, 16, 413-418.	2.4	48
59	Inhibition of pure iron by new synthesized tripyrazole derivatives in HCl solution. Corrosion Science, 2006, 48, 2987-2997.	3.0	47
60	The effect of poly(vinyl caprolactone-co-vinyl pyridine) and poly(vinyl imidazol-co-vinyl pyridine) on the corrosion of steel in H3PO4 media. Journal of Applied Electrochemistry, 2007, 37, 819-826.	1.5	44
61	Some new bipyrazole derivatives as corrosion inhibitors for C38 steel in acidic medium. Research on Chemical Intermediates, 2012, 38, 2051-2063.	1.3	44
62	Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydrate Polymers, 2014, 111, 41-46.	5.1	43
63	5-Naphthylazo-8-hydroxyquinoline (5NA8HQ) as a novel corrosion inhibitor for mild steel in hydrochloric acid solution. Research on Chemical Intermediates, 2012, 38, 1591-1607.	1.3	42
64	Corrosion inhibition of steel in molar HCl by triphenyltin2–thiophene carboxylate. Arabian Journal of Chemistry, 2011, 4, 243-247.	2.3	41
65	Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution. Journal of Saudi Chemical Society, 2014, 18, 19-25.	2.4	41
66	New bipyrazolic derivatives as corrosion inhibitors of steel in 1M HCl. Progress in Organic Coatings, 2005, 54, 170-174.	1.9	40
67	Chemical composition and antioxidant activity of essential oils and solvent extracts of Ptychotis verticillata from Morocco. Food and Chemical Toxicology, 2011, 49, 533-536.	1.8	40
68	Inhibition of mild steel corrosion in 5Â% HCl solution by 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione. Research on Chemical Intermediates, 2013, 39, 2777-2793.	1.3	40
69	SYNTHESIS, CHARACTERIZATION, AND COMPARATIVE STUDY OF PYRIDINE DERIVATIVES AS CORROSION INHIBITORS OF MILD STEEL IN HCI MEDIUM. Chemical Engineering Communications, 2009, 196, 1536-1546.	1.5	39
70	Chemical composition and antioxidant activity of essential oils of Thymus broussonetii Boiss. and Thymus algeriensis Boiss. from Morocco. Asian Pacific Journal of Tropical Disease, 2014, 4, 281-286.	0.5	39
71	DFT and quantum chemical investigation of molecular properties of substituted pyrrolidinones. Arabian Journal of Chemistry, 2012, 5, 163-166.	2.3	38
72	Theoretical approach to the corrosion inhibition efficiency of some quinoxaline derivatives of steel in acid media using the DFT method. Research on Chemical Intermediates, 2013, 39, 1125-1133.	1.3	38

#	Article	IF	CITATIONS
73	Argan hulls extract: green inhibitor of mild steel corrosion in 1ÂM HCl solution. Research on Chemical Intermediates, 2012, 38, 1707-1717.	1.3	36
74	New telechelic compounds as corrosion inhibitors for steel in 1M HCl. Applied Surface Science, 2005, 249, 176-182.	3.1	35
75	The effect of 1′,3,5,5′-tetramethyl-1′H-1,3′-bipyrazole on the corrosion of steel in 1.0ÂM hydrochloric Research on Chemical Intermediates, 2011, 37, 985-1007.	açid. 1.3	35
76	Synthesis, characterization, and POM analysisÂof novel bioactive imidazolium-based ionic liquids. Medicinal Chemistry Research, 2015, 24, 1387-1395.	1.1	35
77	Inhibitive action of two bipyrazolic isomers towards corrosion of steel in 1M HCl solution. Applied Surface Science, 2005, 241, 326-334.	3.1	34
78	Comparative Study of Corrosion Inhibition on Mild Steel in HCl Medium by Three Green Compounds: Argania spinosa Press Cake, Kernels and Hulls Extracts. Transactions of the Indian Institute of Metals, 2013, 66, 43-49.	0.7	34
79	New synthesised diamine derivatives as corrosion inhibitors of steel in 0.5M H2SO4. Progress in Organic Coatings, 2005, 53, 292-296.	1.9	33
80	Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere, 2013, 91, 1627-1634.	4.2	33
81	An investigation of carbon steel corrosion inhibition in hydrochloric acid medium by an environmentally friendly green inhibitor. Research on Chemical Intermediates, 2013, 39, 2663-2677.	1.3	33
82	Essential oil of " <i>Foeniculum vulgare</i> ― antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium. Anti-Corrosion Methods and Materials, 2017, 64, 563-572.	0.6	33
83	Inhibition of Mild Steel Corrosion by some Phenyltetrazole Substituted Compounds in Hydrochloric Acid. Portugaliae Electrochimica Acta, 2012, 30, 53-65.	0.4	33
84	Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco. Chemical Papers, 2010, 64, .	1.0	32
85	Adsorption and Corrosion Inhibition Behavior of C38 Steel by one Derivative of Quinoxaline in 1 M HCl. Portugaliae Electrochimica Acta, 2011, 29, 57-68.	0.4	31
86	Synthesis of novel Cl2Co4L6 clusterusing 1-hydroxymethyl-3,5-dimethylpyrazole (LH) ligand: Crystal structure, spectral, thermal, Hirschfeld surface analysis and catalytic oxidation evaluation. Journal of Molecular Structure, 2020, 1199, 126995.	1.8	30
87	New Eco-Friendly 1-Alkyl-3-(4-phenoxybutyl) Imidazolium-Based Ionic Liquids Derivatives: A Green Ultrasound-Assisted Synthesis, Characterization, Antibacterial Activity and POM Analyses. Molecules, 2014, 19, 11741-11759.	1.7	28
88	The Oil fromMentha rotundifoliaas Green Inhibitor of Carbon Steel Corrosion in Hydrochloric Acid. Chemical Engineering Communications, 2016, 203, 270-277.	1.5	28
89	Poly(4-vinylpyridine-hexadecyl bromide) as corrosion inhibitor for mild steel in acid chloride solution. Research on Chemical Intermediates, 2012, 38, 2309-2325.	1.3	27
90	Inhibition of corrosion of mild steel in 1ÂM HCl by the essential oil or solvent extracts of Ptychotis verticillata. Research on Chemical Intermediates, 2015, 41, 935-946.	1.3	27

#	Article	IF	CITATIONS
91	Towards Understanding the Anticorrosive Mechanism of Novel Surfactant Based on Mentha pulegium Oil as Eco-friendly Bio-source of Mild Steel in Acid Medium: a Combined DFT and Molecular Dynamics Investigation. Chemical Research in Chinese Universities, 2019, 35, 85-100.	1.3	27
92	Adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by verbena essential oil. Research on Chemical Intermediates, 2013, 39, 973-989.	1.3	24
93	Inhibition of corrosion of copper in nitric acid solution by four amino acids. Research on Chemical Intermediates, 2014, 40, 991-1002.	1.3	24
94	Aqueous extracts of olive roots, stems, and leaves as eco-friendly corrosion inhibitor for steel in 1AMHCl medium. International Journal of Industrial Chemistry, 2015, 6, 233-245.	3.1	24
95	Adsorption and inhibition mechanism of (Z)-4-((4-methoxybenzylidene)amino)-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione on carbon steel corrosion in HCl: Experimental and theoretical insights. Journal of Molecular Structure, 2021, 1231, 129901.	1.8	24
96	The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 5Â% hydrochloric acid. Research on Chemical Intermediates, 2013, 39, 3089-3103.	1.3	23
97	Peptidic compound as corrosion inhibitor for brass in nitric acid solution. Progress in Organic Coatings, 2004, 50, 144-147.	1.9	22
98	Effect of pulegone and pulegone oxide on the corrosion of steel in 1 M HCl. Monatshefte Für Chemie, 2008, 139, 1417-1422.	0.9	22
99	Inhibition effect of horehound (Marrubium vulgare L.) extract towards C38 steel corrosion in HCl solution. Research on Chemical Intermediates, 2013, 39, 3291-3302.	1.3	22
100	<i>Mentha pulegium</i> extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies. Natural Product Research, 2014, 28, 1206-1209.	1.0	22
101	Investigation of inhibition by 6-bromo-3-nitroso-2-phenylimidazol[1,2-α]pyridine of the corrosion of C38 steel in 1ÂM HCl. Research on Chemical Intermediates, 2015, 41, 913-925.	1.3	22
102	Electrochemical degradation of buprofezin insecticide in aqueous solutions by anodic oxidation at boron-doped diamond electrode. Research on Chemical Intermediates, 2013, 39, 505-516.	1.3	21
103	Study of a cysteine derivative as a corrosion inhibitor for carbon steel in phosphoric acid solution. Research on Chemical Intermediates, 2014, 40, 801-815.	1.3	21
104	Quantum chemical study of inhibition of the corrosion of mild steel in 1ÂM hydrochloric acid solution by newly synthesized benzamide derivatives. Research on Chemical Intermediates, 2014, 40, 1069-1088.	1.3	21
105	Structural studies on Cd(II) complexes incorporating di-2-pyridyl ligand and the X-ray crystal structure of the chloroform solvated DPMNPH/CdI2 complex. Inorganic Chemistry Communication, 2014, 43, 155-161.	1.8	21
106	Effect of the heat treatment on the corrosion behaviour of amorphous Fe–Cr–P–C–Si alloy in 0.5M H2SO4. Applied Surface Science, 2006, 252, 7921-7925.	3.1	20
107	Synthesis of calixarene derivatives and their anticorrosive effect on steel in 1M HCl. Pigment and Resin Technology, 2007, 36, 373-381.	0.5	20
108	Theoretical study of the corrosion inhibition of some bipyrazolic derivatives: a conceptual DFT investigation. Research on Chemical Intermediates, 2012, 38, 2009-2023.	1.3	20

#	Article	IF	CITATIONS
109	Synergistic effect of potassium iodide in controlling the corrosion of steel in acid medium by Mentha pulegium extract. Research on Chemical Intermediates, 2015, 41, 7973-7980.	1.3	20
110	Testing Natural Fenugreek as an Ecofriendly Inhibitor for Steel Corrosion in 1 M HCl. Portugaliae Electrochimica Acta, 2010, 28, 165-172.	0.4	20
111	Synthesis and anticorrosive effect of epoxyâ€allylmenthols on steel in molar hydrochloric acid. Pigment and Resin Technology, 2007, 36, 293-298.	0.5	19
112	TWO DIPODAL PYRIDIN-PYRAZOL DERIVATIVES AS EFFICIENT INHIBITORS OF MILD STEEL CORROSION IN HCL SOLUTION — PART I: ELECTROCHEMICAL STUDY. Surface Review and Letters, 2011, 18, 303-313.	0.5	19
113	Effect of three 2-allyl-p-mentha-6,8-dien-2-ols on inhibition of mild steel corrosion in 1M HCl. Arabian Journal of Chemistry, 2014, 7, 680-686.	2.3	19
114	Inhibitive Action of Argan Press Cake Extract on the Corrosion of Steel in Acidic Media. Portugaliae Electrochimica Acta, 2012, 30, 267-279.	0.4	19
115	Comparative study of the effect of inorganic ions on the corrosion of Al 3003 and 6063 in carbonate solution. Progress in Organic Coatings, 2004, 51, 113-117.	1.9	18
116	Corrosion behaviour of steel in concentrated phosphoric acid solutions. Applied Surface Science, 2005, 252, 1657-1661.	3.1	18
117	Experimental and theoretical study for corrosion inhibition of mild steel 1ÂM HCl solution by some new diaminopropanenitrile compounds. Research on Chemical Intermediates, 2012, 38, 1669-1690.	1.3	18
118	Carob seed oil: an efficient inhibitor of C38 steel corrosion in hydrochloric acid. International Journal of Industrial Chemistry, 2012, 3, 1.	3.1	18
119	Synergistic effect of AM-4VP-9 copolymer and iodide ion on corrosion inhibition of mild steel in 1ÂM H2SO4. Research on Chemical Intermediates, 2013, 39, 1753-1770.	1.3	18
120	Influence of the nature of the anchoring group on electron injection processes at dye–titania interfaces. Physical Chemistry Chemical Physics, 2017, 19, 29389-29401.	1.3	18
121	A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek "Trigonella foenum-graecum― Environmental Monitoring and Assessment, 2019, 191, 405.	1.3	17
122	Novel phenethylimidazolium based ionic liquids: Design, microwave synthesis, in-silico, modeling and biological evaluation studies. Journal of Molecular Liquids, 2020, 315, 113778.	2.3	17
123	Novel calixarene derivatives as inhibitors of mild C-38 steel corrosion in 1ÂM HCl. Journal of Applied Electrochemistry, 2008, 38, 1253-1258.	1.5	16
124	Catechol oxidation: activity studies using electron-rich nitrogen-based ligands. Research on Chemical Intermediates, 2012, 38, 2427-2433.	1.3	16
125	Adsorption and corrosion inhibitive properties of piperidine derivatives on mild steel in phosphoric acid medium. Research on Chemical Intermediates, 2014, 40, 1201-1221.	1.3	16
126	structure and DFT calculations and catalytic activity in the hydrogenation of α,β-unsaturated ketones. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 250-258.	2.0	16

#	Article	IF	CITATIONS
127	Thermodynamic study of metal corrosion and inhibitor adsorption processes in copper/N-1-naphthylethylenediamine dihydrochloride monomethanolate/nitric acid system: part 2. Research on Chemical Intermediates, 2012, 38, 1655-1668.	1.3	15
128	Theoretical study using DFT calculations on inhibitory action of four pyridazines on corrosion of copper in nitric acid. Research on Chemical Intermediates, 2012, 38, 2327-2334.	1.3	15
129	Evaluation of Melissa Officinalis Extract and Oil as Eco-friendly Corrosion Inhibitor for Carbon Steel in Acidic Chloride Solutions. Oriental Journal of Chemistry, 2016, 32, 1909-1921.	0.1	15
130	Thermodynamic Study and Characterization by Electrochemical Technique of Pyrazole Derivatives as Corrosion Inhibitors for C38 Steel in Molar Hydrochloric Acid. Portugaliae Electrochimica Acta, 2013, 31, 53-78.	0.4	15
131	Inhibition de la corrosion de l'alliage d'aluminium 6063 au moyen de composés inorganiques dans une solution de chlorure de sodium à 3 %. Canadian Journal of Chemistry, 2002, 80, 106-112.	0.6	14
132	Synthesis, spectroscopic characterization and catalytic significance of Palladium(II) complexes derived from 1,1 bis(diphenylphosphinomethyl)ethane. Journal of Molecular Structure, 2011, 1002, 107-112.	1.8	14
133	Catecholase activity investigation for pyridazinone- and thiopyridazinone-based ligands. Research on Chemical Intermediates, 2012, 38, 1987-1998.	1.3	14
134	Inhibitive effect of imidazopyridine derivative towards corrosion of C38 steel in hydrochloric acid solution. Research on Chemical Intermediates, 2013, 39, 2369-2377.	1.3	14
135	A comparative study of electrochemical oxidation of methidation organophosphorous pesticide on SnO2 and boron-doped diamond anodes. Chemistry Central Journal, 2015, 9, 59.	2.6	14
136	Adsorption and inhibition effect of 5-phenyl-1,2,4-triazole-3-thione on C38 steel corrosion in 1ÂM HCl. Research on Chemical Intermediates, 2015, 41, 4617-4634.	1.3	14
137	Inhibition effect of E and Z conformations of 2-pyridinealdazine on mild steel corrosion in phosphoric acid. Anti-Corrosion Methods and Materials, 2017, 64, 23-35.	0.6	14
138	The Synergistic Effect of Chloride Ion and 1,5-Diaminonaphthalene on the Corrosion Inhibition of Mild Steel in 0.5†M Sulfuric Acid: Experimental and Theoretical Insights Surfaces and Interfaces, 2018, 13, 168-177.	1.5	14
139	Understanding Corrosion Inhibition of C38 Steel in HCl Media by Omeprazole: Insights for Experimental and Computational Studies. Journal of Failure Analysis and Prevention, 2021, 21, 213-227.	0.5	14
140	Inhibition Effects on the Corrosion of Mild Steel in 1 M HCl by 1,1'-(2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(sulfanediyl)) bis(ethane-2,1-diyl))diazepan-2-one. Portugaliae Electrochimica Acta, 2014, 32, 35-50.	0.4	14
141	Inhibition of copper corrosion in acid solution by N-1-naphthylethylenediamine dihydrochloride monomethanolate: experimental and theoretical study: part-1. Research on Chemical Intermediates, 2012, 38, 1079-1089.	1.3	13
142	Antioxidant activity and effect of quince pulp extract on the corrosion of C-steel in 1M HCl. Research on Chemical Intermediates, 2015, 41, 7463-7480.	1.3	13
143	Etude du pouvoir inhibiteur de la 2,9-chlorométhyl-1,10-phénanthroline pour la corrosion d'un acier doux en milieu HCL 1M A 90 °CStudy of the inhibiting power of 2,9-chloromethyl-1,10-phenanthroline for the corrosion of mild steel in molar hydrochloric acid solution at 90°C. Annales De Chimie: Science Des Materiaux. 2002. 27. 71-80.	0.2	12
144	Piperazine derivatives as inhibitors of the corrosion of mild steel in 3.9ÂM HCl. Journal of Applied Electrochemistry, 2009, 39, 1075-1079.	1.5	12

#	Article	IF	CITATIONS
145	Theoretical investigation of inhibition of the corrosion of A106 steel in NaCl solution by di-n-butyl bis(thiophene-2-carboxylato-O,O′)tin(IV). Research on Chemical Intermediates, 2014, 40, 569-586.	1.3	12
146	Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts. Journal of the Iranian Chemical Society, 2018, 15, 85-92.	1.2	12
147	Effect of substituted methyl group by phenyl group in pyridazine ring on the corrosion inhibition of mild steel in 1.0 M HCl. Anti-Corrosion Methods and Materials, 2018, 65, 87-96.	0.6	12
148	A new mixed pyrazole-diamine/Ni(II) complex, Crystal structure, physicochemical, thermal and antibacterial investigation. Journal of Molecular Structure, 2021, 1236, 130304.	1.8	12
149	Evaluation of catalytic activity of imidazolo[1,2-a]pyridine derivatives: oxidation of catechol. Research on Chemical Intermediates, 2012, 38, 2457-2470.	1.3	11
150	Analysis of cypermethrin residues and its main degradation products in soil and formulation samples by gas chromatography-electron impact-mass spectrometry in the selective ion monitoring mode. International Journal of Environmental Analytical Chemistry, 2012, 92, 1378-1388.	1.8	10
151	Synthesis, spectral, thermal, X-ray single crystal of new RuCl2(dppb)diamine complexes and their application in hydrogenation of Cinnamic aldehyde. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 374-381.	2.0	10
152	Experimental study of inhibition of corrosion of mild steel in 1ÂM HCl solution by two newly synthesized calixarene derivatives. Research on Chemical Intermediates, 2013, 39, 3649-3667.	1.3	10
153	Diagnostic study of the olive oil industry in the Eastern region of Morocco. Materials Today: Proceedings, 2021, 45, 7782-7788.	0.9	10
154	Phenolic and non-Phenolic Fractions of the Olive Oil Mill Wastewaters as Corrosion Inhibitor for Steel in HCl medium. Portugaliae Electrochimica Acta, 2014, 32, 1-19.	0.4	10
155	Environmental-Friendly Adsorbent Composite Based on Hydroxyapatite/Hydroxypropyl Methyl-Cellulose for Removal of Cationic Dyes from an Aqueous Solution. Polymers, 2022, 14, 2147.	2.0	10
156	Kinetic investigation of C38 steel corrosion in concentrated perchloric acid solutions. Materials Chemistry and Physics, 2010, 120, 61-64.	2.0	9
157	Effect of some new diazole derivatives on the corrosion behaviour of steel in 1 M HCl. Desalination and Water Treatment, 2010, 20, 35-44.	1.0	9
158	X-ray single-crystal structure of a novel di-μ-chloro-bis[chloro(2,9-dimethyl-1,10-phenanthroline)nickel(II)] complex: synthesis, and spectral and thermal studies. Research on Chemical Intermediates, 2013, 39, 4011-4020.	1.3	9
159	Studies on the inhibitive effect of potassium ferrocyanide on the corrosion of steel in phosphoric acid. Research on Chemical Intermediates, 2013, 39, 3475-3485.	1.3	9
160	Novel di-μ-chloro-bis[chloro(4,7-dimethyl-1,10-phenanthroline)cadmium(II)] dimer complex: synthesis, spectral, thermal, and crystal structure studies. Research on Chemical Intermediates, 2013, 39, 2451-2461.	1.3	9
161	New catalysts for the chemoselective reduction of α,β-unsaturated ketones: Synthesis, spectral, structural and DFT characterizations of mixed ruthenium(II) complexes containing 2-ethene-1,3-bis(diphenylphosphino)propane and diamine ligands. Polyhedron, 2013, 63, 182-188.	1.0	9
162	Synthesis, characterization and study of methyl 3-(2-oxo-2H-1,4-benzoxazin-3-yl) propanoate as new corrosion inhibitor for carbon steel in 1M H2SO4 solution. Research on Chemical Intermediates, 2016, 42, 987-996.	1.3	9

#	Article	IF	CITATIONS
163	Biological and pharmaceutical properties of essential oils of Rosmarinus officinalis L. and Lavandula officinalis L. Materials Today: Proceedings, 2021, 45, 7768-7773.	0.9	9
164	Effect of acidity level Ro(H) on the corrosion of steel in concentrated HCL solutions. Annales De Chimie: Science Des Materiaux, 2001, 26, 79-84.	0.2	8
165	THERMODYNAMIC STUDY OF CORROSION AND INHIBITOR ADSORPTION PROCESSES ONTO C38 STEEL/PIPERAZINES/PHOSPHORIC ACID SYSTEMS. Surface Review and Letters, 2009, 16, 609-615.	0.5	8
166	Optimisation of hardness and setting time of dental zinc phosphate cementusing a design of experiments. Arabian Journal of Chemistry, 2012, 5, 347-351.	2.3	8
167	The effect of 2-aminoquinoline-6-carboxylic acid on the corrosion behavior of mild steel in hydrochloric acid. Journal of the Iranian Chemical Society, 2012, 9, 635-641.	1.2	8
168	Synthesis, spectral, electrochemical, crystal structure studies of two novel di-μ-halo-bis[halo(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)cadmium(II)] dimer complexes and their thermolysis to nanometal oxides. Journal of Molecular Structure, 2015, 1099, 323-329.	1.8	8
169	Experimental and Theoretical Studies on Inhibition of Carbon Steel Corrosion by 1,5-Diaminonaphthalene. Journal of Bio- and Tribo-Corrosion, 2018, 4, 1.	1.2	8
170	Effet de l'addition de composes inorganiques sur le comportement a la corrosion de l'alliage d'aluminium 3003 en milieu bicarbonate. Annales De Chimie: Science Des Materiaux, 2000, 25, 593-600.	0.2	7
171	Effect of the addition of oxo-anions on the corrosion and passivation of tin in synthetic industrial water. Applied Surface Science, 2006, 253, 555-560.	3.1	7
172	Quantum chemical study of some triazoles as inhibitors of corrosion of copper in acid media. Research on Chemical Intermediates, 2013, 39, 1279-1289.	1.3	7
173	Synthesis and XRD of Novel Ni4(µ3-O)4 Twist Cubane Cluster Using Three NNO Mixed Ligands: Hirshfeld, Spectral, Thermal and Oxidation Properties. Journal of Cluster Science, 2021, 32, 227-234.	1.7	7
174	Cellulose Acetate-g-Polycaprolactone Copolymerization Using Diisocyanate Intermediates and the Effect of Polymer Chain Length on Surface, Thermal, and Antibacterial Properties. Molecules, 2022, 27, 1408.	1.7	7
175	Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments. Research on Chemical Intermediates, 2013, 39, 659-669.	1.3	6
176	New Heterocyclic Compounds: Synthesis, Antioxidant Activity and Computational Insights of Nano-Antioxidant as Ascorbate Peroxidase Inhibitor by Various Cyclodextrins as Drug Delivery Systems. Current Drug Delivery, 2021, 18, 334-349.	0.8	6
177	Synthesis, spectral, thermal, and a crystalline structure of complexes containing [MeC(CH2PPh2)3Cu(l)]. Research on Chemical Intermediates, 2013, 39, 721-732.	1.3	5
178	Temperature and extraction methods effects on yields, fatty acids, and tocopherols of prickly pear (Opuntia ficus-indica L.) seed oil of eastern region of Morocco. Environmental Science and Pollution Research, 2022, 29, 158-166.	2.7	5
179	INVESTIGATION OF ADSORPTION AND INHIBITIVE EFFECT OF CALIXARENE DERIVATIVE NEWLY SYNTHESIZED TOWARDS C38 STEEL IN MOLAR HCI. Surface Review and Letters, 2009, 16, 401-406.	0.5	4
180	Interaction between poly(4-vinylpyridine-graft-bromodecane) and textile blue basic dye by spectrophotometric study. Research on Chemical Intermediates, 2013, 39, 3199-3208.	1.3	4

#	Article	IF	CITATIONS
181	Trans/cis isomerization of [RuCl2(diphosphine)(diamine)] complexes: Synthesis, X-ray structure and catalytic activity in hydrogenation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 105, 466-473.	2.0	4
182	Use of hydroxylapatite composite membranes for analysis of bisphenol A. Research on Chemical Intermediates, 2014, 40, 2621-2628.	1.3	4
183	Investigation of the Corrosion Inhibition Behavior of C38 Steel in Hydrochloric Acid Solution by 2-Hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic Acid. Transactions of the Indian Institute of Metals, 2015, 68, 521-527.	0.7	4
184	Design, Synthesis, Characterization of Novel Ruthenium(II) Catalysts: Highly Efficient and Selective Hydrogenation of Cinnamaldehyde to (E)-3-Phenylprop-2-en-1-ol. Molecules, 2014, 19, 5965-5980.	1.7	3
185	A rapid and an efficient synthesis for 3,5-disubstituted 1,2,4-oxadiazoles under microwave irradiation. Research on Chemical Intermediates, 2015, 41, 1601-1606.	1.3	3
186	rac-(E,E)-N,N′-Bis(2-chlorobenzylidene)cyclohexane-1,2-diamine. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1075-o1075.	0.2	3
187	Monitoring heavy metal contamination levels and microbiological pollution in seawater of Agadir coastal zones. Indonesian Journal of Science and Technology, 2020, 5, 463-469.	0.7	3
188	An Insight into All Tested Small Molecules against FusariumÂoxysporum f. sp. Albedinis: A Comparative Review. Molecules, 2022, 27, 2698.	1.7	3
189	Synthesis and evaluation of bipyrazolic derivatives as inhibitors of corrosion of C38 steel in molar hydrochloric acid. Research on Chemical Intermediates, 2013, 39, 3441-3461.	1.3	2
190	Hydratation mechanism of a zinc phosphate cement and development of its mechanical profile. Research on Chemical Intermediates, 2013, 39, 3117-3126.	1.3	2
191	N′-[(E)-2-Chlorobenzylidene]thiophene-2-carbohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1442-o1442.	0.2	2
192	(2,9-Dimethyl-1,10-phenanthroline-κ2N,N′)bis(thiocyanato-κS)mercury(II). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1259-m1259.	0.2	1
193	1-{[Benzyl-(2-cyano-ethyl)-amino]-methyl}-5-methyl-1H-pyrazole-3-carboxylic acid ethyl ester. MolBank, 2006, 2006, M494.	0.2	0
194	3-[Benzyl-(3,5-dimethyl-pyrazol-1-ylmethyl)-amino]-propionitrile. MolBank, 2006, 2006, M495.	0.2	0
195	3-[Benzyl-(1,5-dimethyl-1H-pyrazol-3-ylmethyl)-amino]-propionitrile. MolBank, 2006, 2006, M496.	0.2	0
196	Crystal structure of 3-(pyrazin-2-ylamino)-2-benzofuran-1(3H)-one, C12H9N3O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2014, 229, 385-386.	0.1	0
197	5,5-Dimethyl-2,2-di(pyridin-2-yl)hexahydropyrimidine. MolBank, 2015, 2015, M838.	0.2	0
198	Characterisation by electrochemical impedance spectroscopy of a pet membrane electrode based on zeolithe. Research on Chemical Intermediates, 2015, 41, 3261-3273.	1.3	0